【摘 要】
:
随着现代游戏行业的飞速发展,玩家对于游戏品质的要求也越来越高。在游戏中,智能寻路是人工智能的重要应用之一,而A*算法则是智能寻路算法中最热门的算法之一。A*算法结合了启发式搜索的思想,筛选出当前“最优”节点,从而能够大大提升搜索效率。但是A*算法由于需要扩展“最优”节点的所有后继节点,因此在地图较大且复杂的情况下,会面临节点搜索效率低且内存占用大的情况。同时,A*算法仅使用了距离维度的启发函数来评
论文部分内容阅读
随着现代游戏行业的飞速发展,玩家对于游戏品质的要求也越来越高。在游戏中,智能寻路是人工智能的重要应用之一,而A*算法则是智能寻路算法中最热门的算法之一。A*算法结合了启发式搜索的思想,筛选出当前“最优”节点,从而能够大大提升搜索效率。但是A*算法由于需要扩展“最优”节点的所有后继节点,因此在地图较大且复杂的情况下,会面临节点搜索效率低且内存占用大的情况。同时,A*算法仅使用了距离维度的启发函数来评估当前节点,因此难以准确识别出“最优”节点。此外,当可用内存有限时,如何合理调整寻路策略以逼近目标节点,同时节省内存开销,也是A*算法面临的难点之一。
针对以上A*算法的不足,论文提出了一种改进的限定内存A*算法,称之为IMA*算法(Improved Memory-bound A*)。IMA*算法提出了将桶结构和二叉堆结构相结合的高效搜索结构。在搜索节点数较多的情况下,该搜索结构将节点合理划分到不同桶中,能够在桶内实现高效的节点排序。因此该结构能够快速的筛选出“最优”节点,从而提升了节点搜索效率。同时,IMA*算法创造性的引入了地图中高度和角度信息,丰富了启发函数的衡量维度。改进后的启发函数为高度和角度信息分配了合适的权重因子,从而提高了识别“最优”节点的准确性。此外,为了降低寻路过程中内存占用,IMA*算法提出了遗忘列表内存优化策略。在可用内存受限的情况下,该策略仅为被剔除节点的父节点创建了遗忘列表并分配了内存空间,从而节省了内存开销。
论文基于Unity3D建立了实验仿真平台,论证了IMA*算法在实际游戏场景中的适用性,并多方面对比分析了IMA*算法的性能。实验结果表明,和标准A*算法相比,IMA*算法平均减少了22.4%的搜索节点个数。此外,IMA*算法能够节省内存占用,并且在寻路可靠性方面具备一定优势。
其他文献
复杂环境下的目标识别技术是引信近感探测的难点问题。脉冲激光作为一种主动探测手段,通过发射、接收激光束,对接收信号适当处理后与发射信号进行比较,可获得目标的相关信息,从而对飞机、导弹、坦克等目标进行探测及识别。对比无线电、磁及红外探测,激光在探测过程中更不容易受主动电磁干扰,但对复杂的战场自然环境,如云雾、烟尘环境,可能会使激光引信在探测的过程中误把干扰因子识别为目标,造成虚警。因此,研究激光引信在
人体目标检测与跟踪技术是当今社会的主要研究方向和流行趋势。由于人体作为非刚体的代表,相关技术应用到行人方面具有重要的研究价值,而且某些目标与人体目标对象可能具有相似的外形,不利于对人体多目标的检测与跟踪,使目标人体对象的特征提取变得极为困难。因此,对不同应用场景和平台下的多目标人体特征进行有效的检测与跟踪具有深远的应用潜力。 针对不同平台、场景和传统算法对人体多目标检测率低的问题,本文在残差网络
在空空对抗的毁伤效能评估体系中,由于弹丸炸点位置依赖引信接收到的目标反射回波能量大小,目标的博弈性根据炸点位置的变化随机改变,使多发引信炸点与敌目标之间具有博弈对抗关系,双方攻防对抗特性的探索使近炸毁伤这一领域的研究更贴合现代战场的发展方向。国内对于这一方面的研究较少,很难系统的给出破片式战斗部对目标毁伤的数学模型和此过程的可视化模拟仿真。因此,研究不确定目标姿态、不确定炸点位置、不确定破片场空间
为解决听障人群沟通需求日益增长与手语普及率低之间的矛盾,以及用户体验需求的便捷性与智能设备功能的复杂性之间的矛盾,本文借助深度神经网络对人机交互领域的连续手语语句识别问题展开研究,主要研究工作包括: (1)提出了一种基于区域-卷积神经网络(Region-Convolutional Neural Networks,R-CNN)算法与伽马变换相结合的手部区域分割算法。R-CNN用于检测彩色图像中的目
随着互联网技术的快速发展,用户对存储系统容量和性能的要求越来越高。基于NAND闪存的固态盘由于其大容量和高性能等特性被广泛使用。为满足用户不断增长的容量需求,闪存厂商通过多层单元存储以及3D闪存技术提升存储密度,但在增加闪存容量的同时降低了闪存性能。闪存芯片提供双模切换操作允许单元存储比特数在多位及一位间进行切换,以利用高性能的SLC(Single-Level Cell, 1 bit/cell)模
21世纪,由于全球油价上涨,油页岩工业复苏。在2019年,美国从页岩中开采的致密油已达到其原油产量的半数以上。中国的“十二五”与“十三五”计划,也将油页岩工业提升到了重要的战略地位。 然而,页岩油资源的开采难度较大,成本较高。测井评价作为油页岩工业中的重要一环,有重要的研究意义。将机器学习运用于测井评价,有助于在传统方法的基础上,进一步提高测井评价的准确性,并为发现测井数据的内在规律提供新思路。
现在大型商业云服务提供商,如阿里云,需要以最小的成本为用户提供高质量服务。因此这些云数据中心内部广泛部署由固态硬盘(Solid State Drive,SSD)和机械硬盘(Hard Disk Drive,HDD)组成的混合存储节点,同时提供SSD的高性能和HDD的大容量。这些混合存储节点通常会将应用数据先写入SSD,以保证较低的写入延迟,然后后台线程将其合并批量写到对应的HDD。这种写模式被称为S
随着数据密集型应用内存消耗逐渐增大,现有的动态随机存储器(Dynamic Random Access Memory, DRAM)作为计算机内存已经难以满足大容量、高密度以及低能耗等需求。新兴的非易失性内存技术(Non-Volatile Memory, NVM)具有大容量、高密度和低功耗等特点,可以与DRAM共同组成大容量的混合内存以满足应用需求。但由于当前NVM在读写性能上与DRAM尚存在差距,在
云服务商需要高性价比的大规模存储,通常采用混合存储节点,也就是使用高速固态硬盘(Solid State Drive, SSD)作第一级快速存储,机械硬盘(Hard Disk Drive, HDD)作第二级后端存储。但是SSD存在写磨损和写延迟相对高的问题,因此如何尽量减少SSD写入数据量,并充分发挥其读性能优势,成为了研究热点。 为了理解大规模商业云系统中的数据存取行为,本文分析了阿里巴巴公司盘
基于日志结构合并树(Log-Structured Merged Tree,LSM-Tree)的键值存储系统由于良好的读写性能,受到越来越多的关注,已经成为近期存储系统研究的一个热点。然而,当前的LSM-Tree键值存储系统无法高效地处理频繁更新的倾斜负载,数据会频繁地写入到底层持久化设备,影响前台键值对的插入性能;同时,其内部存在写放大问题,并且文件元数据读取效率也存在改善的空间。 考虑到上述问