论文部分内容阅读
非线性泛函分析已成为现代数学中的重要研究方向之一,而非线性算子理论又是非线性泛函分析的重要内容。自二十世纪八十年代初以来,郭大钧、孙经先、杜一宏、刘兆理、朱传喜、李福义等利用半序方法研究了缺乏紧性或缺乏连续性条件的非线性问题,并获得一系列新的结果。本文分别对半序Banach空间中非线性算子一些问题进行了研究。
全文分四章。在第一章中,主要介绍了半序Banaeh空间非线性算子的研究历史背景、现状以及半序Banach空间中的预备知识;在第二章中,利用半序方法研究了Banach乘积空间中严格集压缩减算子不动点存在唯一性问题,在弱连续的条件下,得到了不动点的存在唯一性和迭代收敛性,同时,给出了它们的一些应用;在第三章中,建立了拟弱连续减算子的正不动点定理,并证明了算子C=A+B,C=D-A的正不动点存在唯一性定理;在第四章中,得到了半序Banach空间中混合单调算子的不动点存在性及唯一性定理。