【摘 要】
:
本论文研究Euler-Poisson方程组及其相关模型的近似逼近理论.在流体力学模型中,Euler-Poisson方程组及其相关模型用来描述半导体器件或等离子体的运动.通过对Euler-Poisson方程组及其相关模型的理论研究,不仅可以丰富模型关于解的适定性理论,而且可以促进我们更深入地了解量子等离子体模型与经典等离子体模型之间本质的区别与联系.离子Euler-Poisson方程组(即离子声波)
论文部分内容阅读
本论文研究Euler-Poisson方程组及其相关模型的近似逼近理论.在流体力学模型中,Euler-Poisson方程组及其相关模型用来描述半导体器件或等离子体的运动.通过对Euler-Poisson方程组及其相关模型的理论研究,不仅可以丰富模型关于解的适定性理论,而且可以促进我们更深入地了解量子等离子体模型与经典等离子体模型之间本质的区别与联系.离子Euler-Poisson方程组(即离子声波)以及电子Euler-Poisson方程组(即Langmuir波)分别来源于Euler-Maxwell系统的低频以及高频震荡部分.Euler-Maxwell系统是用来描述等离子体动力学的双流体模型,其中可压缩离子流和电子流与其自身的自洽电磁场相互作用.即使只考虑线性化的情形,也会出现离子声波、Langmuir波以及光波.在非线性情形下,Euler-Maxwell系统是许多著名的色散偏微分方程的起源,如Korteweg-de Vries(KdV)方程、Kadomtsev-Petviashvili(KP)方程、Zakharov方程、Zakharov-Kuznetsov(ZK)方程以及非线性薛定谔(NLS)方程,通过不同的时间空间尺度变换以及渐近形式展开,它们从形式上均可由Euler-Maxwell系统得到.在本文中,我们将严格证明量子Euler-Poisson方程组的量子KdV极限(一维)以及量子KP极限(二维),并严格得到一维情形下离子Euler-Poisson方程组及量子Euler-Poisson方程组的NLS逼近.另外,我们建立了三维情形下无热耗散的Boussinesq-MHD系统光滑强解的整体存在性和唯一性.本文分为以下七个章节.第一章,绪论.本章着重介绍课题的研究背景、相关模型以及发展现状.第二章,考虑一维情形下带有量子效应的Euler-Poisson方程组的量子KdV极限.在时间尺度O(ò-3/2)上,通过Gardner-Morikawa(GM)变换并利用扰动的方法可以从形式上得到量子KdV方程或者无粘Burgers方程.具体地说,当用来描述量子效应的无量纲参数H12时,形式上可得量子KdV方程.而当H(28)2时,形式上可得无粘Burgers方程.本章我们从数学上严格证明此极限过程.首先,将未知函数在平衡态附近进行形式展开,得到极限方程.其次,将极限方程与量子Euler-Poisson方程组结合得到误差方程.为了得到关于误差的一致能量估计,我们主要利用先验估计以及能量方法.在此过程中,量子效应项导致更高阶的偏导数需要处理.第三章,当考虑二维全空间时,在不同的空间尺度变换下,可以从形式上得到量子KP方程.因此本章我们考虑二维全空间?2中量子Euler-Poisson方程组的量子KP极限,此过程与一维情形有很大的区别.首先,在GM变换中,关于x 1方向与x2方向的奇性不同,从而需要带有奇性的先验估计以及能量泛函.其次,由于两个空间方向各向异性,从而在得到一致能量估计的过程中需要对两个方向分开处理.最后,此结果可以推广到n维.第四章,本章考虑一维情形下离子Euler-Poisson方程组的NLS逼近.拟线性二次项的出现会导致两方面的困难.首先,导数的丢失会导致无法得到一致能量估计.其次,由于Euler-Poisson系统的线性化系统拥有连续谱,从而导致共振点的出现.利用形式渐近展开、Normal-Form变换以及定义新的修正能量泛函等措施,我们得到关于误差项的一致能量估计,进而严格证明在时间尺度O(ò-2)上,离子Euler-Poisson方程组的解收敛到以NLS方程的解为复振幅的正弦波解.第五章,本章讨论量子Euler-Poisson方程组的NLS逼近.我们主要利用时空共振方法处理非共振区域,且定义新的能量泛函处理拟线性项.与第四章的方法不同,我们将高低频区域分为三个部分.对于高频部分也即非共振区域,采用时空共振的方法而非Normal-Form变换(本身会损失导数)来处理.对于低频部分也即共振区域,利用Noraml-Form变换定义能量泛函,而非直接利用此变换消除拟线性项.第六章,本章考虑三维情形下无热耗散的Boussinesq-MHD系统光滑强解的整体存在性和唯一性.由于温度变量满足一个输运方程,因此为了得到温度变量的高正则性,我们需要结合关于速度以及磁场的能量估计.进一步,由于多孔介质流体中的Brinkman-Forcheimer-extended-Darcy定律,我们所考虑的系统中包含一个非线性阻尼项.第七章,我们主要概括和总结了本文的主要结果并介绍了我们今后的研究问题.
其他文献
高能对撞机是粒子物理学探索和寻找超出标准模型的“新物理”机制的有效途经之一,为人们认识微观世界提供了实验证据。由于强相互作用中夸克禁闭效应和夸克的分数电荷,夸克均以强子态的形式存在。目前实验上已经发现了众多强子态,特别是在2017年中国LHCb实验团队发现的双粲重子是强子研究中的一个重要成果。双重味强子以其丰富的物理信息成为QCD研究的主要课题之一。由于夸克模型所预言的其他双重味重子,如Ξbc和Ξ
柱矢量光束因其独特光学特性,可构建空心光环、空心光针和三维空心焦斑等特殊聚焦光场。此类光场在光镊、粒子操控和光学显微等领域具有巨大应用潜力;现有产生方案依赖于传统光学器件的聚焦功能,焦斑尺寸受到衍射效应限制,严重影响上述光学领域的发展,因此需要研究突破衍射极限的方法。光学超振荡利用较低空间频率的谐波分量,实现局部空间频率快速振荡,该技术可实现远场超分辨聚焦。开展柱矢量光场远场超振荡器件研究,具有重
众所周知,刃位错会使晶体发生弯曲。在薄膜中,有限个同号刃位错等间距排列会使得宏观弯曲效应更加明显。而正反刃位错周期性排列只会给晶体带来周期性的形变,不会有宏观弯曲。本文旨在建立描述自由边界薄膜中刃位错的基本方程,研究刃位错与薄膜塑性弯曲的关系,并在最后讨论了一维位错-反位错自组织阵列带来的中和效应。根据Peierls-Nabarro(P-N)模型建立无限大块体中位错方程的思想,要想建立薄膜中的刃位
Toeplitz算子与复合算子是函数空间上两类重要的算子,在现代分析中有着广泛的应用.线性算子动力学是泛函分析中一个年轻而又迅速发展的分支,与遍历论、微分方程、Banach空间几何学、矩阵论等多个学科均有密切的联系.本文立足于函数空间上的算子理论,研究Hardy-Toeplitz算子与复合算子的动力学性质,如(频繁)超循环性、混合性、混沌性质等.全文总共分为六章:第一章,介绍线性算子动力学的背景、
本文主要研究了多目标优化问题的Kuhn-Tucker最优性条件。在一定的正则性假设下分别得到了连续Fréchet可微的多目标问题的二阶Kuhn-Tucker最优性条件和二阶强Kuhn-Tucker最优性条件。此外,建立了局部有效解的近似强Kuhn-Tucker最优性必要条件,也讨论了锥约束向量优化问题的强Kuhn-Tucker最优性条件。本文主要分为以下七个章节:第一章,绪论。介绍了多目标优化的研
突破衍射极限,实现更高分辨率、更小聚焦光斑是光学领域的重大挑战之一。衍射极限效应已经严重制约了深亚波长光刻、超高密度存储、超分辨光学显微、微纳光学加工、医疗成像等领域的进一步发展。近年来研究者采用荧光标记、图像重建等技术在一定程度上实现了超分辨成像,但其为间接成像方式而无法反应被测物体的光学本质。如何突破衍射极限的制约、提高光场调控的精度、研究具有更小尺寸的衍射光斑及更高效率的超分辨聚焦器件是亟待
拓扑动力系统是动力系统的一个重要的分支,它主要研究紧的可度量化空间上的群作用。拓扑动力系统的研究与遍历理论、拓扑群、一般拓扑学、组合数学、数论、代数、泛函分析等数学分支有密切的联系,一直得到国内外学者的持续关注。因为tame作用是一类非常重要的拓扑动力系统,所以直到今天tame作用的相关研究依然很活跃。本文主要研究极小tame作用和naive熵。首先,我们利用McMahon的构造和组合独立性得到了
无网格方法是近年来迅速发展起来的一种基于节点而不是网格的新型数值方法,是当前数值方法研究的热点之一。众所周知,无网格方法的数学理论并不完善,这在一定程度上限制了其发展与应用。本文针对无单元Galerkin方法求解二阶椭圆混合边值问题和不可压缩流体问题进行了理论分析和数值应用,具体研究工作如下:首先,研究了求解二阶椭圆混合边值问题的无单元Galerkin方法的先验近似估计。通过使用罚方法施加Diri
趋化性和趋触性机制分别指细胞或者微生物朝着或远离某些化学信号物质运动的现象和细胞朝着不可扩散的物质运动。这两个机制在生物现象中有比较广泛的应用,比如癌细胞的扩散,生物除污,伤口的愈合,细胞模式的形成,细胞的分类以及胚胎发育等等。本文主要分析多类生物趋化模型解的适定性、弱解和渐近行为。本文分为如下七个章节:第一章,绪论。主要讨论本文所研究问题和问题的生物背景以及其国内外发展现状,并简要地陈述本文的主
函数空间上的算子理论和非交换几何作为泛函分析学科中的两个有着密切联系的重要研究分支,得到了国内外学者们广泛的关注和研究.特别地,一方面,由于Toeplitz算子在函数论、控制论、概率论、信息学、物理学等领域中的广泛应用,直到今天,有关函数空间上Toeplitz算子的性质研究依然十分活跃;另一方面,非交换几何中的度量空间的粗嵌入问题作为近二十几年来新兴的问题,由于其在群论、几何拓扑、Banach空间