论文部分内容阅读
第一部分可扩张椎体支架的设计(一)椎体解剖与可扩张椎体支架的短缩的分析目的:研究国人脊柱椎体的解剖特点和记忆合金特性,利用几何数学原理分析探讨记忆合金可扩张椎体支架(EVS)的设计参数与短缩,探讨EVS椎体内扩张的安全性。方法:10具完整干燥脊柱标本,测量椎体前(A)、中(H)、后(B)的高度和椎体终板截面内倾距离长L与R及中心线长M,以M为EVS长度设计参数;Excel软件统计分析;运用几何原理分析EVS的短缩关系。结果:T4~L5椎体终板水平截面L/R长度为(22.3±2.6/22.4±1.8)mm(测量范围为18mm~35mm),中心线M为(20.6±1.7~28.8±2.0)mm(测量范围为17mm~32mm),M略小于L/R;椎体中高H为(15.7±1.8~22.8±1.3)mm(测量范围为12mm~26mm);椎体中高与椎体上终板矢状轴前后缘的比值H/M为0.70~0.80;弧长f取23mm可以满足临床国人胸腰段椎体压缩骨折EVS的设计要求。EVS的短缩差在1.0mm~6.0mm之间:临床常见的胸腰段椎体EVS短缩差为2.0mm~3.0mm之间;特殊设计球形EVS短缩差为4.0mm~6.0mm。结论:椎体侧位前后缘距离M可作为EVS的设计参数和应用规格的选择依据;EVS在椎体内可以安全的扩张。(二)记忆合金椎体可扩张支架设计参数的探讨目的:测算记忆合金椎体可扩张支架的表面积、体积与质量,初步测算可扩张椎体支架的镍离子游离量,探讨其作为体内植入物的可行性。方法:对本设计的三、四、五、六瓣叶可扩张椎体支架表面积和自身体积进行测算,记忆合金镍离子相关资料数据,推算可扩张椎体支架的镍离子游离度;对照正常人体血镍浓度、人体日生理摄入量,对其结果进行对照。结果:本设计可扩张椎体支架每只的表面积在420mm2~900mm2之间,体积为110mm3~280mm3,质量为772mg~1968mg。可扩张椎体支架的镍离子体外Hanks液的测算最大峰值游离量为7517.4×10-6μg~16852.44×10-6μg;设计最大规格的可扩张椎体支架在Hanks液释放镍离子的理论峰值占正常人体血镍离子量的0.0034%。结论:可扩张椎体支架的镍离子极微量游离,可作为椎体內的植入物。第二部分可扩张椎体支架的基础实验(一)椎体标本内扩张效果的初步影像观察——脊柱椎体压缩骨折的微创动力内固定(MIVDIF)设计目的:影像观察记忆合金板材研制的记忆合金椎体可扩张支架(SMA-EVS)在椎体内的初步实验复形与椎体的空腔形成情况,探讨其临床意义。方法:0.75mm厚的记忆合金板材初步研制的六瓣EVS 5枚,3枚置入两节未行骨折预处理的椎体标本,顶瓣旋转植入观察椎体内空腔的形成情况;另2枚置入一节行压缩骨折预处理的椎体内,一枚旋转植入,另一枚正常角度植入对照观察。标本摄片和CT三维重建,观察EVS对椎体标本的空间构建。结果:未骨折预处理的标本植入的3枚EVS顶瓣侧向旋转后,椎体内仍形成良好的空腔,EVS扩张后未见明显骨块卡入;骨折预处理的标本EVS顶瓣旋转置入,CT重建可见骨折椎体内的松质骨块可经宽的侧瓣间隙卡入EVS的空腔内,另一枚EVS顶瓣按设计要求置入,CT重建未见骨块卡入EVS空腔内。结论:EVS在椎体内可以产生预期的空间作用;六瓣EVS瓣叶的旋转植入椎体内可能对EVS的空腔产生影响。初步实验的影像结果为不同类型椎体压缩骨折临床应用提供了实验基础。(二)可扩张椎体支架填充材料的体外初步探究目的:观察体外可吸收填充材料的性能与记忆合金可扩张椎体支架(EVS)体外生物力学。方法:测试1.0mm厚度记忆合金板材研制的3瓣叶、4瓣、5瓣各一枚和0.8mm厚度的记忆合金板材研制的5瓣2枚,EVS应力-位移曲线,位移设定为7mm;测试水调制的α半水硫酸钙(SCS)调制的干燥模块生物力学;测试EVS填充SCS干燥后的生物力学;位移均设为5mm。调制磷酸钙(CP)、硫酸钙(SCS)与羟基磷灰石(HAP)至团状,直接置入水中,观察其变化。结果:在测试的应力-位移曲线结果中,单纯支架最大力学区间位于136.4-246.8N;水调制的SCS模块干燥后生物力学范围为128.3N~151.1N;EVS支架填充SCS干燥后最大位移的生物力学459.9N~602.5N之间;三者生物力学有显著差异,P<0.05;单纯水调制的磷酸钙(CP)、硫酸钙(SCS)与羟基磷灰石(HAP)在水中后均不能成型。结论:EVS有良好的生物力学;SCS、CP、HAP虽然在干燥环境中产生良好的生物力学强度,但不能在水中干结成型,水调剂样品不能实现单独对椎体骨折胶合固定。(三)可扩张椎体支架椎体内扩张与生物材料填充效果影像观察目的:影像观察记忆合金研制的可扩张椎体支架(SMA-EVS)椎体内扩张复形及材料填充效果。方法:自行研制的记忆合金支架六瓣7枚。3枚置入两节未行骨折预处理的椎体标本;另2枚置入一节行压缩骨折预处理的椎体内;观察椎体空腔与自体松质骨填充。一枚六瓣植入椎体侧边,直接填充可吸收填充材料;另一枚五瓣支架两次植入一侧灌注过骨水泥的标本内,观察支架椎体内的扩张影响,一次植入改良后的可吸收填充材料植入扩张空腔内。标本摄片和CT三维重建,观察支架对椎体标本的空间构建与填充材料灌注效果。结果:所植入的支架7枚8次在椎体标本内完全扩张6次,2次不全扩张。骨折预处理后的植入支架均获得扩张,可形成良好的空腔,部分骨折椎体内松质骨卡入支架空腔内;靠近椎体侧缘植入的支架部分扩张,填充可吸收生物材料后影像显示填充效果不理想;两节椎体预先一侧填充骨水泥,支架均仅获得部分扩张,随后改良填充材料植入支架空腔内,获得良好填充。将此椎体做了骨折处理,支架获得扩张。结论:记忆合金可扩张椎体支架在骨折椎体内可达到自行扩张复形并产生预期的空间作用;未做骨折预处理的椎体标本可能受皮质骨以及松质骨自身强度和其他因素(椎体强化)的影响,支架不能完全扩张;传统的可吸收填充材料并不能很好的填充支架的空腔;改良后的填充材料具有良好的可操作性。第三部分可扩张椎体支架的生物力学研究(一)不同瓣叶可扩张椎体支架的生物力学初步测试目的观察自行研制的记忆合金可扩张椎体支架的初步力学性能。方法对1.0mm厚度记忆合金板材研制的3瓣、4瓣、5瓣各1枚和0.8mm厚度的记忆合金板材研制的5瓣2枚、6瓣1枚可扩张椎体支架进行初步的压力测试,观察支架的应力-位移曲线变化。结果在测试的力学-位移结果中,可扩张椎体支架压力位移曲线呈“S”形变化,随着压力增大,支架的力量逐渐增大;当支架位移压缩7mm时,4瓣5瓣支架的极限张力为100~246N;所测试的支架在完全压缩后没有断裂;压缩后的支架置于温水中,支架均完全扩张,支架高度没有丢失。结论记忆合金可扩张椎体支架具有良好的初始张力,可以为骨折椎体提供初始的复位、扩张和支撑。(二)Kyphon球囊与可扩张椎体支架的生物力学观察目的:观察自行研制的记忆合金可扩张椎体支架(Shape Memory Alloy Expandable Vertebrae Stent,SMA-EVS)的力学性能与Kyphon球囊的生物力学性能。方法:对1.0mm厚度记忆合金板材研制的3瓣、4瓣、5瓣各1枚和0.8mm厚度的记忆合金板材研制的5瓣2枚、6瓣1枚EVS进行初步的压力测试,观察支架的应力-位移曲线变化,Kyphon球囊压入2ml液体,球囊应力值在80PSI左右,同法在生物力学测试仪上测试应力-位移曲线,设定位移值为5mm。结果:在测试的力学-位移结果中,EVS压力位移曲线呈"S”形变化,随着压力增大,支架的力量逐渐增大;在支架的极限位移7mm时,4瓣5瓣支架的极限张力为100~246N;Kyphon的应力-位移为一渐进的曲线,5mm位移时Kyphon球囊的应力值为150PSI,所测压力值为123N。结论:可扩张椎体支架与Kyphon球囊为两个不同的力学体系,球囊的工作压力可作为椎体内松质骨的应力参照;记忆合金可扩张椎体支架可以为骨折椎体提供初始的复位、扩张和支撑。(三)不同工艺可扩张椎体支架的生物力学初步测试目的:对先期研制的记忆合金可扩张椎体支架椎体内扩张后,对改进工艺参数的不同瓣叶不同工艺可扩张椎体支架的力学强度进行测试,目的进一步探索支架工艺与生物力学强度的关系,探讨支架的设计参数与制造工艺间的关系,寻求支架的最佳工艺。方法:支架的工艺可由记忆合金板材与管形材料加工而成。最初椎体内扩张成功的支架为记忆合金板材加工而成。本次支架生物力学性能的检测以此其基础,在改进其设计参数研制的支架中进行。本次支架生物力学强度的检测分如下几组:参照组:与椎体内扩张成功的同批次6瓣0.8mm记忆合金板材支架生物力学强度为参照组:其记忆合金板材设计参数厚0.8mm,瓣叶宽约1.2mm。因此,以其生物力学强度作为初始参照。第一组:3枚1.0mm记忆合金板材(3瓣、4瓣、5瓣各1枚)与0.8mm记忆合金板材(5瓣共2枚),共计5枚;本组为第一批支架的生物力学检测,所以在测试其生物力学强度时采用瓣叶接近全压缩状态,其压力位移设为7mm。此组作为支架生物力学强度的对照标准组。第二组:1.0mm厚度记忆合金板材6瓣1枚;0.8mm厚的记忆合金管形材料8瓣支架1枚;0.8mm厚度的记忆合金板材6瓣2枚、5瓣3枚;此组生物力学强度测定作为本设计支架的可能生物力学强度区间,压力位移设为5mm。第三组:0.8mm厚的记忆合金管形材料6瓣支架1枚、8瓣1枚;探索设计预期最理想的管形材料研制的支架性能与生物力学强度,压力位移为9mm。第四组:1.0mm厚度6瓣支架和0.8mm管形材料8瓣支架对应瓣叶的应力重复测试,观测本设计支架的记忆效应,压力位移为5mm。第五组:1.0mm厚度板材6瓣支架;检测瓣叶不同放置位置时的生物力学强度变化。衡仪生物力学测试仪测试记录支架的应力-位移曲线变化。结果:参照组:椎体内扩张的6瓣同批次的支架生物力学强度测定,压缩位移在7mm时,生物力学强度值为90N;第一组:各型瓣叶支架生物力学强度参照组:板材工艺的记忆合金可扩张椎体支架在测试的力学-位移结果中,压缩位移在7mm时,对应的生物力学强度为136N~236N之间;椭球体的支架压力位移曲线呈"S”形变化,在位移压缩2mm左右,支架生物力学强度范围在50N-75N,随后支架力学强度随着位移曲线呈弧形增加,出现一个“平台期”;随着压力-位移的进一步增大,压力-位移曲线再次出现陡的曲度变化,其压力位移终末时压力强度达到136N~236N之间,平均168N;其中1.0mm板材3瓣的支架瓣叶的支架在整个测试过程中生物力学强度最大,4瓣的其次,0.8mm板材制作的6瓣支架生物力学强度压力位移曲线对应值最小。第二组:支架生物力学强度区间组:本组结果中,1.0mm厚度记忆合金板材的6瓣支架生物力学强度在整个测试过程中最大,5mm的压缩位移终末值为238N。第三组:管形材料支架生物力学强度测试结果0.8mm厚度的管形材料研制的支架形状大致为菱形,即瓣叶非椭球形结构,为单一弧形结构。在压缩1mm时对应压力为45N-65N左右,在2mm处达到约73N,这一位移过程,支架的应力高于对应的板材工艺支架;随后支架随压力位移进入“平台期”,8瓣支架在压力位移近终末期略有所增加,6瓣的略有所下降;至设定的最大位移9mm时压力值为72N-110N,无板材加工的椭球形结构的“S”形尾端生物力学强度增加的情形。第四组:1.0mm厚度6瓣支架和0.8mm管形材料8瓣支架的应力重复测试,支架生物力学强度变化测试结果。第五组:1.0mm厚度6瓣支架瓣叶不同放置位置时的生物力学强度变化。结论:支架具有良好的生物力学性能和记忆特性;不同厚度、不同瓣叶与不同工艺的支架其生物力学性能有所差异。(四)可扩张椎体支架椎体内生物力学分布有限元分析目的:应用脊柱有限元分析方法分析生理载荷作用下,椎体内植入记忆合金可扩张椎体支架后,椎体与支架生物力学强度的变化。方法:老年骨质疏松女性L1CT扫描资料,利用一系列计算机辅助设计软件构造相对应的L1骨质疏松性椎体的三维有限元模型。分析轴向压缩、前屈、后伸、侧向5种加载状态下正常椎体、植入支架前后,记忆合金可扩张椎体支架与L1椎体的应力变化情况。结果:在椎体未植入支架的单纯负载模拟实验中,椎体侧弯、后伸、前屈、旋转、直立时所受的应力分别为:17.1MPa、21.1MPa、44.0MPa、13.1MPa、11.4MPa。植入支架后,椎体载荷模拟实验中,所受应力与未植入支架时无变化。而椎体内支架在侧弯、后伸、前屈、旋转、直立时所受的应力分别为:82.7MPa、49.8MPa、42.6MPa、79.1MPa、22.8MPa。当模拟支架撤出椎体内,椎体内支架空槽应力结果在侧弯、后伸、前屈、旋转、直立时所受的应力分别为:82.7MPa、49.8MPa、39.2MPa、79.1MPa、22.8MPa。在本实验组的三维有限元的分析结果中,椎体植入支架前后仅在前屈位时椎体应力出现变化,无支架时椎体前屈最大应力为44.0MPa,植入支架后,最大应力为42.6MPa,当椎体内支架模拟从椎体内移除时,椎体最大应力为39.2MPa。结论:记忆合金可扩张椎体支架植入椎体后,在椎体多数运动状态下椎体受力无明显变化;在前屈状态下,椎体植入支架前后最大应力有所变化,提示植入支架后的初期依然要减少前屈运动对椎体前缘的应力。第四部分脊柱结构的基础研究(一)椎体截面的数理学原理分析与脊柱病变的探讨研究背景:脊柱结构由椎体与椎间盘相间连接构成,这样的复合体对于脊柱的结构与力学有何特殊意义?临床上,在脊柱的椎体骨折与椎间盘退变中有何内在的结构因素?目的:测量脊柱椎体终板截面的横径与矢径,利用数理学原理分析脊柱椎体—椎间盘受力传递规律,分析人体脊柱椎体—椎间盘的受力规律与临床病理联系。方法:测量10具完整脊柱标本C2-S1各椎体上下截面的横径(L)、矢径(H),运用几何学相似原理:椎体/椎间盘上下截面面积变化可近似用数学方程表达,S1/S2=(a*b)/(A*B),S=π/4*L*H,分析椎体上下截面的结构规律;根据椎间盘的结构,利用物理学静水液压原理:F1/F2=S1/S2,分析椎间盘压力变化规律;根据数理学原理推测脊柱椎体—椎间盘的结构与力学规律。结果:脊柱椎体截面的结构从C2下截面到L4下截面面积呈“S”形曲线递增,L4下截面面积最大,L4下截面到S1上截面递减;椎体—椎间盘间截面横径矢径决定其椎体截面面积、压力系数K,K=L*H。结论:脊柱椎体—椎间盘自身结构决定了脊柱特有的力学传递与分布规律;建立数理学方程来认识脊柱的结构与力学传递规律能更直观的理解与观察脊柱力学特性与临床脊柱病变规律。(二)脊柱骨折的分型研究随着临床治疗研究的进一步认识,以及影像学技术的发展,尤其是螺旋CT的影像重建技术和MRI技术的出现,给临床脊柱骨折的诊断与认识提供了更为直观的影像学依据。随着临床技术的发展,特别是近半个世纪来脊柱外科治疗技术的普及应用,近30年来脊柱微创外科的发展,临床上对脊柱骨折的治疗和认识有了更深刻的变化。根据脊柱自身结构与骨折规律,以及半个多世纪以来临床脊柱外科骨折治疗进展,根据临床症状、体格检查、影像学依据,结合脊柱骨折类型、影像学诊断和神经损伤程度综合考虑,我们在此引入脊柱骨折神经柱概念,将脊柱骨折分为三柱三型,以便适应新的临床技术变化与应用。