【摘 要】
:
混杂系统的可达性问题是控制理论的一个非常重要的研究领域,其研究成果具有重要的理论和实际意义.本文在文献[5]的基础上研究不确定混杂系统可达性问题基于生存性理论的数值逼
论文部分内容阅读
混杂系统的可达性问题是控制理论的一个非常重要的研究领域,其研究成果具有重要的理论和实际意义.本文在文献[5]的基础上研究不确定混杂系统可达性问题基于生存性理论的数值逼近算法,文中得到了在一定假设条件下混杂系统状态约束集的逼近序列,并通过此逼近序列得到混杂生存核的数值逼近算法,另外给出了混杂系统可达性问题最小时间函数的定义并得到其数值逼近格式,包括时间离散逼近格式和完全离散格式,讨论了时间离散逼近格式的收敛性,同时通过最小时间函数的上图与混杂生存核之间的关系得到了混杂生存核的另一种数值逼近算法;本文还讨论了混杂系统最优控制的数值逼近问题,并分别得到了连续最优控制和离散最优控制的数值逼近序列.
其他文献
风险理论的研究基本上是,在考虑到各种经济环境因素的基础上,建立更贴近实际的风险模型。周知,马尔科夫过程的研究至今已经形成了丰富而深刻的理论体系。因此,马尔科夫模型的
生存性问题是控制理论中的一个重要研究领域,其研究成果具有重要的理论意义和应用价值。本文首先讨论了一维确定混杂控制系统在闭区间内的最大不变域的计算问题以及一维不确定
RNA在蛋白质合成中发挥着非常重要的作用。RNA包含转移RNA(tRNA),信使RNA(mRNA)和核糖体RNA(rRNA)。转移RNA起着携带和转移活化氨基酸的作用;信使RNA是合成蛋白质的模板:核糖体
跨域学习是在传统的迁移学习的基础上转变而来,旨在为多媒体数据之间构造一个基于数学余代数同态结构模型,找到更加符合数据结构关联性更加稳定的一些特征和模型,为多媒体数据建
浸入和流形的不变性的方法是最近Astolfi等人提出了一种非线性系统适应镇定的方法,这种方法对于不可测状态和未知参数的处理上用一种统一的方法,并在控制器的设计中,体现了与
项目响应(item response)曲线遍布经济、医药科学、金融等各个领域,它具有明显的单调性,用于拟合这类曲线的数据呈现出这样的性质:即虑去噪声适合一个单调函数,称为单调类型
在海洋声学中,通常采用特征模展开方法来求解无界区域中声波的传播,其控制方程是Helmholtz方程。特征模展开方法就是将解展开成波导一组完备模式的线性组合。无界平板声波导
本文主要研究有限s-弧传递图的分类问题。令Γ表示一个图,VΓ、EΓ、和AutΓ分别表示它的顶点集、边集和全自同构群。顶点序列(α0,α1,…,αs)称为一个s-弧,如果对任意可能
本文对Critical number及其逆问题进行了研究。假设G是一个有限群,S是G的一个子集且不含单位元。如果G的每个元素都能表示为S的子集和的形式,那么我们称S为G的一个堆垒基,有