【摘 要】
:
近代以来,人类对自然资源的过度开采和利用产生了一系列环境问题。核能作为一种众所周知的清洁能源,对其进行开发和利用,有助于构建清洁低碳、安全高效的能源体系。为了能更快更好地推进核能的研究和利用,解决核废处理问题刻不容缓,尤其是针对半衰期长、毒性强的α废物。本文以两种不同成因的天然花岗岩(岩浆成因的闪长岩和变质成因的角闪变粒岩)作为固化基材,Nd2O3和CeO2作为模拟α废物,通过传统的焦耳加热方式烧
论文部分内容阅读
近代以来,人类对自然资源的过度开采和利用产生了一系列环境问题。核能作为一种众所周知的清洁能源,对其进行开发和利用,有助于构建清洁低碳、安全高效的能源体系。为了能更快更好地推进核能的研究和利用,解决核废处理问题刻不容缓,尤其是针对半衰期长、毒性强的α废物。本文以两种不同成因的天然花岗岩(岩浆成因的闪长岩和变质成因的角闪变粒岩)作为固化基材,Nd2O3和CeO2作为模拟α废物,通过传统的焦耳加热方式烧结制备了一系列不同废物且不同掺杂量的天然花岗岩模拟α废物固化体。探究了其最佳制备条件,并通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、场发射扫描电镜(FESEM-EDS)等对固化体的物相、结构、微观形貌进行了表征分析,获得了两种天然花岗岩对不同废物的溶解度,并对固化体的物理化学稳定性进行了分析评价。主要研究内容如下:(1)岩浆成因的闪长岩模拟α废物固化体的最佳玻璃化条件为1300℃,保温1 h。变质成因角闪变粒岩模拟α废物固化体在1500℃下烧结3 h所包含的晶体相更少,物理性能更佳。(2)岩浆成因的闪长岩通过玻璃、陶瓷两相复合固化的方式实现了对模拟An3+废物(Nd2O3)的固定,其溶解度达到76 wt.%,通过单一的玻璃固化对模拟An4+废物(CeO2)的溶解度为8 wt.%。实验发现固化体中存在Nd-O键对应的红外吸收峰,该吸收峰与Nd参与陶瓷相的形成有关。随着Nd含量变化,固化方式由单一的玻璃固化逐渐转变为玻璃、陶瓷两相固化。在固化体中未检测到与Ce相关化学键的红外吸收峰,说明Ce4+未参与玻璃网络结构的构成。该类型花岗岩对模拟An3+、An4+废物达到最大溶解度的样品在42天时的累积浸出分数均维持在10-5~10-6g·m-2·d-1量级。(3)变质成因的角闪变粒岩通过玻璃固化的形式对模拟An3+、An4+废物进行固定,对Nd2O3的溶解度为38 wt.%,对CeO2的溶解度为23 wt.%。该类型固化体中未观测到Nd、Ce相关化学键的红外吸收峰,说明Nd3+、Ce4+均未参与玻璃网络结构的构成。对于构成模拟An3+废物固化体的硅氧四面体以链状和层状结构为主,且随着废物掺杂量的增加,在达到最大溶解度之前,链状结构占比逐渐增多,层状结构逐渐占比较少。对于构成模拟An4+废物固化体的硅氧四面体则以层状为主,且加入废物后,各结构占比随掺杂量的增加无明显变化。该变质成因的花岗岩对模拟An3+、An4+废物达到最大溶解度的样品42天时的累积浸出分数均为10-6g·m-2·d-1量级。
其他文献
现代武器系统和含能材料的发展主题一直离不开更高的能量水平和优异的燃烧性能。环三亚甲基三硝胺(RDX)、环四亚甲基四硝胺(HMX)、六硝基六氮杂异伍兹烷(CL-20)等单质含能材料与亚稳态分子间复合物材料(MICs)集成为复合含能材料是提高整体能量系统性能的补充策略。本论文通过设计和调整微观结构,利用RDX、聚多巴胺(PDA)涂层和聚四氟乙烯(PTFE)/铝粉通过超声合成技术构建核壳结构复合材料。由
随着社会的高速发展,化石燃料等常规能源物质带来的环境污染问题也日益严重。人们迫切需要一种更为清洁高效的能源来推动社会的发展,因此核能作为绿色能源在近年来得到高速发展。但是随着核能的发展,也存在一些关键技术问题。首先是陆地铀资源的稀缺性使得从海水中浓缩和提取铀成为影展响核能发的重大技术问题。其次,核燃料循环中产生的大量含铀废水严重破坏了社会和生态环境,这也对溶液中铀的去除和分离提出了更高的要求。MO
在核能的发展利用中,不可避免地会产生放射性废物,尤其是高放废物。高放废物释热率高,且含有半衰期长、生物毒性强的放射性核素,必须对其进行有效的处理处置以保障核能的可持续发展。针对高放废物的处理,最有效的措施是固化。锆石(ZrSiO4)被认为是固化高放废物的候选基材之一,然而因化学剂量偏差或制备方法等问题,常获得含有第二相的SiO2/ZrSiO4复相陶瓷,对材料的性能会产生一定的影响。因此,研究SiO
高氯酸铵(AP)作为固体复合推进剂的主要的能量组分,提升AP的燃烧性能、热分解性能、安全性能和防吸湿性能对于推动航空航天和军事化学的发展具有重要意义。超细高氯酸铵(UF-AP)拥有更快的燃烧速度,但AP的尺寸变小会导致其吸湿加剧和安全性能降低,AP热分解和安全性能之间相互矛盾也是行业难以解决的难题。本研究首先提出了一种简单高效的重结晶的方法细化AP,针对其细化后吸湿的难题,引入了超疏水的概念,选用
作为核电运行重要的核燃料,铀的供应是保障核电可持续发展的关键,然而陆地上已探明的铀矿石储量只能提供全球70年左右的核能消耗。海洋中铀的蕴含量是陆地上已探明铀储量的近1000倍,因此海水提铀技术可保障核工业的可持续健康发展。作为新兴的海水提铀方法,电化学海水提铀具有萃取动力学快、吸附容量高、易解吸等优势。然而,目前电化学海水提铀面临外加电力、电极材料活性低等问题,亟需开发兼具高电化学活性位点和高选择
铀作为核燃料的主要成分,也是核废水中的主要污染元素。值得注意的是,核废水若直接排放到环境中,废水的U(VI)能随地下水迁移导致土壤和水体污染,从而影响动植物的健康。因此,经济高效地从放射性废水中分离提取可溶性铀既可实现“废铀利用”,又能避免环境污染,是实现核能清洁发展关键一步。光催化法是一种通过太阳能激发半导体从而诱发光化学反应的绿色方法,具有安全、经济、无二次污染等优点。在众多半导体光催化剂中,
压电陶瓷叠堆是由多个压电陶瓷片组成,具有体积小、出力大、响应快等特点,在航空航天、军事研究等领域得到了广泛的应用,因此本课题针对叠堆型压电陶瓷在模型震动抑制系统中的应用,研究设计一款大功率压电陶瓷叠堆数字驱动电源。论文对叠堆型压电陶瓷进行研究和分析,列出了叠堆型压电陶瓷的相关特性,分析了叠堆型压电陶瓷的等效电路模型,通过对比国内外市场上叠堆型压电陶瓷驱动电源,并根据叠堆型压电陶瓷的驱动方式,针对此
在中国城市化进程的不断增加中,基建在大力建设,特别是城市轨道交通的建设进程正在飞速提升[1]。在城市轨道交通建设的过程中,施工事故也频繁发生,故城市轨道交通的安全监测工作必不可少。针对目前城市轨道交通安全监测中监测内容多、处理方式复杂、成果报告量大,同时极易产生偶然操作误差的问题。本文依托成都轨道交通18号线、19号线工程,参考了地铁施工安全监测的各项技术要求,通过对日常安全监测中沉降、水平位移、
随着军事和武器弹药的发展,高能低感的炸药的研究一直是一个既传统又重要的研究热点。纳米含能材料为新型高能量,高反应性的含能材料的发展带来了机遇,具有广阔的应用前景。然而,如何防止炸药颗粒减小到机械感度较低的纳米尺度时静电感度的急剧升高是目前难以解决的棘手问题。为了在保持纳米炸药能量优势的前提下综合提升纳米炸药在应用中的多方面安全性能,本研究基于导电聚合物材料和碳材料,利用简单的原位聚合包覆和超声辅助
中国散裂中子源(Chinese Spallation Neutron Source,CSNS)是我国首台脉冲散裂中子源。散裂中子源质子打靶时刻T0经多级扇出后,一方面用于斩波器电子学触发以实现中子波长筛选功能,另一方面用于中子谱仪探测器电子学的触发以保证飞行时间测量的准确性。因此T0信号的准确性是谱仪可靠运行的前提和基础。多物理谱仪是CSNS新建的大型谱仪之一,谱仪配备了双T0斩波器和3台带宽斩波