重尾索赔下带干扰风险模型破产概率的研究

被引量 : 0次 | 上传用户:w478435139
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文致力研究几种不同风险模型的破产理论,主要研究的基本模型是经典风险模型和延迟更新风险模型,讨论的模型均是建立在重尾分布族的基础之上的。由于在风险理论研究之中,大多数金融研究者没有考虑随机干扰的因素,本文考虑了影响保险公司不确定的收入和支出,因而加入了随机干扰项。具体工作如下:首先,介绍了破产概率和一些常用的重尾分布子族的定义;次指数分布作为一类重要的重尾分布子族,紧接着又讨论了次指数分布和重尾分布的一些重要性质。其次,本文提出了带随机干扰经典风险模型.。证明了在具有相对安全负载p>
其他文献
关于微分方程的理论研究已经有着悠久的历史,到现在已经得到了大量的应用结果.随着社会的发展,不管是在工程,生态等自然科学领域还是在金融,管理等社会科学领域,泛函微分方程都有
二十世纪六十年代, A.Beurling,G.Bj(o)rck,和H.Komatsu等利用权函数给出了超可微函数和超广义函数的概念.在二十世纪八十年代,Bonet,Meise和Taylor等人又引入了ω-超可微函数和ω
非线性抛物微分方程是数学物理学科中一类重要的偏微分方程,比如反应扩散方程,非线性Schr(o)dinger方程等都属于这一类型。此类方程的解析解是很难求得的,而实际问题中的应用又