【摘 要】
:
随着微纳制造技术的日益成熟与发展,微机电系统变得更加复杂和更加微小,其装配要求和装配难度也随之提升,这也越来越显示出微操作系统研究的重要性。本文提出一种基于LRC振荡电路原理的微纳机械臂。该机械臂利用静电悬浮原理生成作用在微器件上的电场力,使用LRC振荡电路对电场力进行反馈控制,实现微器件的拾取、移动和放置操作。通过建立微纳机械臂机电耦合力学模型,分析了LRC振荡式微纳机械臂实现微纳操作的工作原理
论文部分内容阅读
随着微纳制造技术的日益成熟与发展,微机电系统变得更加复杂和更加微小,其装配要求和装配难度也随之提升,这也越来越显示出微操作系统研究的重要性。本文提出一种基于LRC振荡电路原理的微纳机械臂。该机械臂利用静电悬浮原理生成作用在微器件上的电场力,使用LRC振荡电路对电场力进行反馈控制,实现微器件的拾取、移动和放置操作。通过建立微纳机械臂机电耦合力学模型,分析了LRC振荡式微纳机械臂实现微纳操作的工作原理。研究了微纳机械臂进行拾取、移动和放置微操作时工件的受力情况。仿真分析了微纳机械臂的工作过程的电场变化,计算了仿真模型的电容值与电场力变化曲线。搭建了一个基于LRC振荡式微纳机械臂的微纳操作系统,该微纳操作系统由图像反馈系统、运动定位系统、电源电路模块三个部分组成。根据微纳操作系统对末端执行器的要求,研究了末端执行器的制备工艺,使用电化学腐蚀方法制备出微米工具电极与纳米工具电极。使用微纳操作系统进行了微米颗粒操作实验。通过实验对系统参数进行了优化调整。完成了微米级氮化硅颗粒的拾取、移动与放置操作,证明了微纳操作系统操作微米级元件的可行性。使用微纳操作系统进行了纳米颗粒操作实验。通过实验完成了系统参数的优化调整。完成了螺旋碳纳米管和单分散聚苯乙烯纳米球的拾取、移动与放置操作,证明了微纳操作系统操作纳米级元件的可行性。
其他文献
目前航天器舱段及部件间的调姿对接工艺仍主要以人工调整为主,传统对接调姿平台具有精度差、效率低、安装空间有限、作业安全性不足等特点。尤其在卫星太阳翼对接装配中已成为影响制造工艺的瓶颈问题。针对卫星太阳翼对接装配的需求,分析当前国内外各类调姿机构研究现状,枚举六自由度支链构型,制定评价准则,筛选支链构型构建调姿支链构型谱库。进而基于并联机构的型综合分析,提出构建地面封闭定平台的模块化支腿式并联机构,确
近年来,遥操作系统由于可以延伸人类的触觉而被越来越多的运用在生活工作中。同时,由遥操作系统的构成可知,系统的信息传输通道是互联网。而时滞是系统中所有经由互联网传递信息而产生的一个必然结果。研究表明,即使存在很小的时滞也会导致系统不稳定或者系统性能急剧降低。从控制角度出发,系统的稳定性是系统其他性能工作的基础。因此,研究具有时滞的网络化遥操作系统的稳定性是具有一定的实际意义。本文的研究工作有以下几个
在智能车辆行驶的过程中,快速并准确检测出周围交通场景中危险目标是实现智能驾驶的基础,也是当前智能车辆技术所需要解决的关键问题之一。本文针对单一传感器数据冗杂程度低、目前多传感器融合算法不能满足应用需求等问题,提出了基于激光雷达和图像异构数据融合的前方车辆识别方法,主要工作内容如下:(1)卷积神经网络的理论分析和数据集的选取与处理。为了更好理解基于深度学习的深度补全和目标检测算法的基本原理,本文通过
近年来随着生产作业方式的改变,脊柱疾病发病率不断升高。而脊柱手术需要在复杂狭小空间实现精准的手术作业,人为操作风险极大。手术机器人技术是医工等多领域交叉的新兴研究领域,手术机器人和医生优势互补,可巧妙地完成复杂操作,能够提高手术安全性和可靠性。本文以椎板磨削减压术为应用背景,设计出一种4自由度的椎板磨削手术机器人系统,对其开展了运动学、轨迹与仿真研究,并进行了实验样机研制、虚拟现实场景规划及硬件系
在本文,首先引入了一个新的空间,即W-空间,并通过反交换性和交换点等条件,得到了若干个公共不动点定理;其次利用完备的度量空间上的度量诱导出Haudorf度量,并考虑了满足具有变系数的收缩型或Φ-收缩型的非空值的集值映射族,并给出了两个集值映射的公共不动点的存在性定理和具有唯一性的充分条件;最后在拓扑线性空间值锥度量空间上讨论了满足某种拟收缩型条件的无穷多个映射族的唯一公共不动点的存在性问题,得到了
人工神经网络的研究在自动控制领域,图像处理,模式识别等各个领域都有着非常重要的作用.运用动力学原理研究神经网络的算法和性质是一件非常有意义的工作,而差分方程是研究动力学系统常用的数学模型,所以差分方程是研究神经网络动力学行为的常用模型.由于大规模网络研究目前仍旧缺少有效地工具和方法,所以建立小规模的简单而实用的数学模型愈加重要.本文中考虑了如下形式的非线性差分方程其中{an}n=0∞,{bm}n=
采用水下运载机器人对深海信号传感器进行投放和回收工作过程中,进行深海信号传感器的定位是一项较为困难的工作。本文通过建立浮标上浮过程动力学模型,分析上浮运动轨迹,从而反向定位深海信号传感器的位置。通过建立基于水动力影响下的水下运载机器人动力学模型,提高了机器人在传感器回收过程中的运动控制稳定性,同时,为了节省水下运载机器人的能源消耗,并且实现深海信号传感器的快速寻找和定位,对传感器回收过程中的水下运
灾难的巨大破坏性和不可控性造成了巨大的经济损失和人员伤亡。目前,最好的应对方法是在灾难发生后,尽快实施救援行动,以减少损失和伤亡。由于灾后现场的非稳定因素不利于救援人员展开救援行动,因此需要救援机器人辅助或替代救援人员进行救援。然而,现有的救援机器人结构固定,功能单一,难以适用于复杂的救援环境。针对该问题,本文提出了一种新型模块化自重构救援机器人的结构设计及运动规划。主要研究内容包括:(1)设计了
热轧无缝钢管钢管具有良好的机械性能、易机加工、使用寿命长等优点,广泛应用于空心精密零件的坯料、航空航天框架结构,以及液压气压元件所需的管件上,例如精密轴承管、气动或液压元件以及车辆航空高精度结构管等。斜轧穿孔是将棒材转化成无缝钢管的第一道工序,在此过程中将实心棒材穿孔成空心毛管。这种工艺主要靠顶头将钢棒中心顶穿,可以看出在这个过程当中,顶头的表面轮廓质量影响着钢管内壁的质量。在上述过程中,顶头工作
现代城市建筑中采用的高空玻璃幕墙为保证透光性和美观性需要定期进行清洗,目前城市高空玻璃幕墙的清洗工作仍采用效率较低、危险性较高的人工清洗。本文的目的是设计一种高空玻璃幕墙清洗机器人,使其能够安全高效地代替人工完成玻璃幕墙的清洗工作,主要研究内容如下:首先,根据实际工作环境,确定了爬壁机器人设计所需的关键技术指标,总结国内外爬壁机器人研究现状,归纳目前爬壁机器人设计中采用的运动方式、吸附方式以及清洗