3D海胆状镍钼氮催化剂构筑及其低电位电催化氧化性能研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:auiadufzxyw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着传统化石能源的消耗和环境污染问题的加剧,氢能作为清洁高效的新能源倍受研究者关注。当前研究中,氢转电的硼氢化钠燃料电池技术以及电转氢的电解水制氢技术,均存在阳极反应动力学迟缓和能量效率低的问题。本文首先研究了直接硼氢化钠燃料电池所需的低过电位阳极电催化剂的设计与制备。其次,通过对催化剂表面状态的调控,研究了电化学控制硼氢化钠化学水解制氢的新型技术。最后,从经济性和阳极活性氧高效利用的角度出发,通过研究阳极甘油电催化氧化耦合阴极析氢,进一步降低电解水制氢的电压,并获得具有更高附加值的产品。首先,通过水热和热处理两步法制备得到3D自支撑海胆状Ni Mo N@NC催化剂。其不仅具有低的硼氢化钠电催化氧化反应电位(-55m V@10 m A cm-2),也具备大电流电催化性能(44 m V@200 m A cm-2),同时展现出高的催化稳定性。以Ni Mo N@NC为阳极催化剂的直接硼氢化钠燃料电池,表现出高的开路电位(1.02 V)和功率密度(65.7 m W cm-2)。该催化剂优异的氧化活性和稳定性归因于金属间的协同作用、非金属掺杂对金属电子结构的调控作用、3D自支撑结构中丰富的比表面积和碳层对活性位点的保护作用。在上述Ni Mo N@NC电催化氧化硼氢化钠的同时,不可避免地会发生Na BH4的水解反应,我们发现水解反应与催化剂所处电位及表面状态紧密相关。因此,深入开展电化学法调控催化剂表面对硼氢化钠水解反应活性的研究。向催化剂施加-0.05 V的电位,调节催化剂活性组分的电子结构,促进活性位点与BH4-的键合,有利于硼氢化钠水解反应的发生以及氢气的释放(ON状态)。向催化剂施加0.48 V的电位,Ni Mo N转化为氧化态,活性位点的钝化削弱了其与BH4-的吸附,阻碍了硼氢化钠的水解反应(OFF状态)。基于发展阳极氧化甘油耦合阴极析氢制氢技术的需求,本文开展了基于Ni Mo N@NC的表面修饰以及电氧化甘油性能的研究。通过对Ni Mo N@NC催化剂表面进行电沉积和退火处理,得到具有低OER反应活性以及高GOR反应活性的Ni Co2O4/Ni Mo N@NC催化剂。其优异的甘油氧化性能不仅归因于壳层Ni Co氧化物的协同作用,还源自核层Ni Mo N@NC所提供的极大的比表面积以及较小的质子传导电阻。此外,甘油氧化产物的种类和选择性与电解液的p H密切相关,随着p H的下降,C1产物选择性从98%下降至35%,C2和C3产物选择性则有所提高。
其他文献
畜牧及水产养殖等领域中经常使用兽药来防治一般性和传染性动物疾病,调节动物生理功能,促进动物源性食品的质量和产量。随着兽药长期大量使用,动物体内未被代谢的残留药物会通过其排泄物进入环境,造成污染,水产养殖中的药物投放也对水质产生影响。食物链将动物体内以及受污染的土壤、水体和其他作物等中的药物残留向人体转移,危及生命健康。因此,建立高效的分析检测食品和环境中兽药残留的方法具有重要研究意义和实用意义。共
学位
伴随快速的城市化,交通拥堵、空气污染、能源危机等问题日益凸显,发展可持续的绿色交通迫在眉睫。自行车作为一种健康、经济且绿色的交通方式,对于建设更加美好的未来城市具有重要意义。在城市层面上理解不同收入水平人群的骑行规律对于未来进行更好的交通规划、推广绿色出行具有重要意义,但过去由于骑行数据难以采集,鲜有研究进行相关分析。近年来,因为无桩共享单车使用的灵活性与便利性,其在国内以及全球范围内蓬勃发展,共
学位
在全球各国工业化进程不断推进的背景下,能源危机和环境污染两大难题亟待解决。传统化石燃料储备面临枯竭,同时CO2大量排放导致温室效应日益严重,世界各国都在寻找可行的碳平衡和碳中和方案。20世纪以来,人工光合作用的相关研究成为研究领域热点课题,其实质即为光催化CO2还原反应。在传统光催化CO2还原反应的相关研究中,多数选择以H2O作为氧化半反应与其耦合形成完整反应体系。然而,H2O氧化半反应存在催化速
学位
<正>今天,爸爸妈妈要带我去森林公园野营,我激动极了!来到森林公园,只见草坪已经快被各种帐篷占满了,它们像一个个小城堡一样。我们快速找好一块地,搭好帐篷。爸爸妈妈从包里拿出了好多好吃的,有鸡翅、培根、水果、寿司、炒饭……看着它们,我的肚子咕咕地叫了起来。“饿了,饿了!”我大叫道,迫不及待地从野餐布上抓起一个鸡翅啃了起来。
期刊
肿瘤微环境(Tumor microenvironment,TME)具有乏氧、弱酸性、过量H2O2等特征。其中H2O2与癌细胞的增殖、转移和凋亡有关,因此,H2O2可以作为一种有效的早期癌症诊断的分子生物标志物。除早期检测外,目前针对癌症已经开发出相当多的治疗策略,如化疗、光动力疗法(PDT)、放疗(RT)、光热疗法(PTT)、和化学动力疗法(CDT)。其中,CDT依赖于在酸性条件下与肿瘤细胞内的H
学位
目前人类面对的两个最具挑战性的难题就是环境恶化和能源短缺。空气污染已上升为一个会直接危害环境和健康的问题。因此,寻找可再生清洁能源和检测治理有毒有害气体成为当今社会的两个艰巨任务。在众多解决方法中,气体传感器已成为一种高效检测危险性气体的关键技术;光电催化(PEC)水裂解一向被公认为可再生能源探索的潜力股。纳米半导体材料因具有量子、光电等特性被普遍用在气体传感技术和PEC水裂解领域。其中,钨酸盐纳
学位
酶具有高催化活性和高特异性等特点,使基于酶催化的分析技术具有较高灵敏度和选择性。然而,酶自身的脆弱性使其暴露在外部环境中时极易失活,限制了酶在分析领域中的进一步应用。共价有机骨架(COFs)胶囊材料不仅可以为天然酶提供物理保护,还能保持内部酶的自由度。目前COFs胶囊材料固定化酶仍然存在酶固载量低、易泄露和合成步骤繁琐等缺点。针对以上问题,本论文基于COFs胶囊的形成机理,提出无模板法原位封装酶的
学位
随着便携式能量储存与转换装置的需求日益增加,水系可充电Zn|Mn O2电池由于其价格低廉,安全高效等优点,在众多储能装置中具有独特的应用前景而备受关注。其中,正极材料Mn O2的应用受限于其固有的导电性差,晶体结构易在循环过程中坍塌等缺点,影响了Zn|Mn O2电池的性能;另外,商业锌片在反复充放电过程中也面临着枝晶、副反应等问题,影响了安全性和充放电效率。本论文通过蜂窝状多孔碳原位生长Mn O2
学位
硫鎓盐作为一种四价硫化合物广泛应用于生物及化学领域。有机体中,S-腺苷甲硫氨酸(S-adenosyl-L-methionine,SAM)是重要的甲基供体,存在于所有真核细胞中。SAM具有硫鎓盐结构,可通过亲核取代以及自由基反应等方式参与甲基化过程,协助生物体完成多种新陈代谢活动。事实上,硫鎓盐作为一类重要有机反应原料以及反应中间体,也可用于实现多种类型的转化反应。如何高效构筑硫鎓离子中间体以及拓展
学位
冷冻引起的凝固会导致液体流动特性的变化,妨碍其有效、安全的使用。当液体在低于冰点的温度下运行时,不可避免地会发生结冰现象,导致有害影响甚至安全问题。比如,航空燃料的冰点通常需要低于-80℃以避免在高海拔结冰,用于火星探索的液体需要确保在超低温度下高效和安全的使用。然而,检测低于-80℃的冰点仍然是一个巨大的挑战。目前,基于液体冷冻过程中物理性质的变化,已经建立了几种冰点检测技术,例如冷冻曲线、差示
学位