【摘 要】
:
本文主要研究了三类非线性动力系统的分岔与混沌行为。第一个模型讨论了一类磁流变阻尼器模型的稳定性和分岔分析,利用稳定性理论和Hopf分岔理论分析该系统的局部动力学行为,最后采用Runge-Kutta方法,进行了数值模拟,验证了理论分析的结果。第二个模型研究了新四维自治系统在初始平衡点处的稳定性及分岔情况。研究了平衡点处可能的四种类型的分岔。借助于中心流形定理和规范形理论,获得了导致初始分岔和次分岔的
论文部分内容阅读
本文主要研究了三类非线性动力系统的分岔与混沌行为。第一个模型讨论了一类磁流变阻尼器模型的稳定性和分岔分析,利用稳定性理论和Hopf分岔理论分析该系统的局部动力学行为,最后采用Runge-Kutta方法,进行了数值模拟,验证了理论分析的结果。第二个模型研究了新四维自治系统在初始平衡点处的稳定性及分岔情况。研究了平衡点处可能的四种类型的分岔。借助于中心流形定理和规范形理论,获得了导致初始分岔和次分岔的临界分岔线的表达式。数值模拟证实了分析结果。第三个模型详细研究了由Winkler和Pasternak地基支撑的碳纳米管的次谐波分岔和混沌动力学的动态行为。分析了未受干扰系统的同宿轨道和周期轨道。用Melnikov方法研究了混沌运动的机理和参数条件,得到了混沌区域和非混沌区域的临界曲线分岔的条件。通过特征乘数来研究次谐分岔的稳定性条件。数值模拟证实了分析结果。
其他文献
背景和目的缺血性脑血管病(Ischemic cerebrovascular disease,ICVD)是危害中老年人身心健康的重要疾病,短暂性脑缺血发作(transient ischemic attack,TIA)和脑梗塞是其重要
目的:近年来免疫疗法成为癌症治疗的热点,但需要找到更合适的治疗靶点。研究表明,腺病毒E1A结合蛋白p300(EP300,下简称p300),作为组蛋白乙酰基转移酶家族的成员,通过乙酰化组
风险控制是投资中一个重要话题,风险管理中对VaR、CVaR风险度量这两个方法的研究相对比较集中.VaR综合考虑了预期风险的大小及该风险发生的概率,通过事前计算规避市场风险;CV
目的1.了解冠心病患者D型人格、慢性病资源利用、感知控制和赋权的现状;2.调查冠心病患者赋权的影响因素;3.探讨冠心病患者D型人格影响赋权的机制,分析慢性病资源利用和感知
随着经济进入新常态,创新被赋予了新的内涵与使命。将创新作为经济发展的第一驱动力,才能破解我国资源、环境、经济发展的难题和瓶颈制约,推动我国区域经济社会协调发展。京
以ReBCO为材料的第二代高温超导带材,也被称为涂层导体,因其具有强的载流能力、高的磁场性能和低的材料成本,在医疗、军事、能源等众多领域具备良好的应用前景。由于受到生产
数学学习态度是数学学习心理中重要的衡量指标之一,是学生进行有效学习的重要非智力因素。本文对J省两所综合型大学内数学系师范生,共1507名学生,进行数学学习态度调查,采用标准化量表——芬尼马-舍曼数学学习态度量表进行实证调查,获取被试真实数学学习态度现状。利用SPSS17.0软件对收集到的数据进行数据分析与处理,采用计算均值、独立样本T检验、方差分析和回归分析来检验两所大学学生在各因素上的差异性,得
本论文主要研究两类分数阶微分方程解的性质,包括分数阶薛定谔方程和分数阶p-Laplace方程,研究内容涉及解的存在性、对称性和单调性等。我们利用移动平面法和重排等方法给出了一些区域和解的对称性结果。第一章介绍偏微分方程理论的发展及重要意义,阐述近年来分数阶偏微分方程理论的发展和应用。总结了分数阶Laplaec方程和分数阶p-Laplace方程的基本研究现状,以及这几类方程解的相关性质。第二章介绍分
创新平台作为支撑全社会创新活动的重要载体,在区域经济与科技发展中发挥着不可替代的作用。面对激烈的国际经济与科技竞争,我国提出了建设创新型国家的战略目标。各地区为深
本文从60年代的反主流文化运动着手,探讨了在垮掉的一代、公民权利运动、社会抗议等因素的影响下,嬉皮与迷幻革命的发展始末。迷幻设计在融合多种外来文化后,形成的自身独特