【摘 要】
:
红外热像仪是CASEarth小卫星的载荷之一,在505km轨道高度通过长线列摆扫实现30m分辨率和300km幅宽,是我国目前在研幅宽分辨率比最大的热红外载荷。CASEarth卫星红外热像仪发射入轨后,将为人类活动范围、经济发展情况的探测、污染(水、土和大气污染)监测与生态功能评估、水资源和耕地普查等提供高分辨率的热红外遥感数据。高精度的辐射定标是遥感数据定量化应用的关键。红外热像仪的辐射定标精度受
【机 构】
:
中国科学院大学(中国科学院上海技术物理研究所)
【出 处】
:
中国科学院大学(中国科学院上海技术物理研究所)
论文部分内容阅读
红外热像仪是CASEarth小卫星的载荷之一,在505km轨道高度通过长线列摆扫实现30m分辨率和300km幅宽,是我国目前在研幅宽分辨率比最大的热红外载荷。CASEarth卫星红外热像仪发射入轨后,将为人类活动范围、经济发展情况的探测、污染(水、土和大气污染)监测与生态功能评估、水资源和耕地普查等提供高分辨率的热红外遥感数据。高精度的辐射定标是遥感数据定量化应用的关键。红外热像仪的辐射定标精度受辐射定标模型、定标频次、仪器温度场及探测器的稳定性、黑体等定标源测量精度、仪器灵敏度等因素影响。本论文针对于摆扫式热红外载荷,从多参数联合极值寻优设计、低频次高效定标模型、在轨高精度解算方法等三个方面开展了有针对性研究,具体的研究内容及创新点如下:1.本论文针对于摆扫式相机积分时间受限的问题,建立了响应率、仪器温度、暗电流等多参数联合优化模型,结合工程可实现约束边界,实现了仪器温度场、积分电容、积分时间、光学口径等参数的寻优。同时,本论文还针对于低温出瞳与冷光阑不匹配的大视场光学系统,建立了多组件温度网格仿真模型,实现了仪器杂散辐射优化,8-10.5μm,10.3-11.3μm,11.5-12.5μm三个波段仪器自身热辐射与300K黑体的信号之比分别达到了0.214、0.204、0.563,与Landsat8 TIRS的比例相当。在实现300km幅宽、30m高分辨率的同时,仪器噪声等效温差可优于0.08K。2.长线列摆扫热像仪需通过卫星侧摆观测冷空实现仪器背景定量测量。本文针对于频繁定标影响仪器有效利用时间的问题,提出了一种基于温度场的高频次背景响应预测方法,建立了基于仪器稳定性评估的低频次高效定标模型,实现了单轨观测一次定温黑体、两周进行一次卫星侧摆冷空观测的低频次定标。基于以上常规化的定标方案,引入红外恒星、月球作为交叉辐射定标校验源,可进一步在轨实现定标频次的迭代优化,该方法在其他卫星进行了验证。3.CASEarth红外热像仪采用了三谱段集成滤光片、4级TDI的2000元热红外探测器组件。针对4级TDI探测器,提出了一种基于多温度点遍历的4级TDI像元选择方法,三个波段的噪声等效温差可分别减小13.14%,7.30%,9.36%。针对于光谱透过率、黑体温度的非均匀性等影响辐射定标精度的参数,建立了地面测量和分析方法,提出了低频次高效的定标解算方法,通过地面真空低温辐射定标实验,验证了方法的有效性,实现了优于0.500K的实验室辐射定标不确定度。
其他文献
高分辨率红外遥感是近年来的研究热点,也是空间遥感领域用来探测和识别目标的重要手段。越来越多的应用机构迫切需要同时具有高地面分辨率、高辐射灵敏度和短重访周期的红外遥感仪器,宽视场的红外推扫成像相机成为必然选择。除了要求具有大口径的光学系统外,还需大规模、长线阵的红外焦平面探测器相配合,从而也要有同等规模的信息获取与处理电路与之配套,这势必造成系统资源需求庞大,与空间遥感仪器的资源限制形成了矛盾。为了
红外焦平面器件是红外探测技术的核心部件,碲镉汞雪崩光电二极管(mercury cadmium telluride avalanche photodiode,Hg Cd Te APD)是目前红外焦平面技术前沿研究之一,它具有高增益、低的过剩噪声因子、高灵敏度和高速探测等优点,能实现激光主被动探测、高灵敏度探测和高精度三维成像。本课题对制冷型红外焦平面高精度时间分辨所需读出电路的关键技术做了详细分析。
窄禁带半导体是禁带宽度小于0.5 eV的半导体。其较窄的禁带宽度带来了诸如高非抛物系数、更容易的碰撞离化与更大的带到带隧穿等独特的性质。特别是碲镉汞这类典型的三元合金窄禁带半导体还具有较大的合金散射、单载流子雪崩等独特性质。在很多需要微弱光信号探测的领域,雪崩光电探测器都有重要应用,比如:遥感、主被动联合探测、激光雷达、量子通信和天文观测等。然而,目前雪崩理论主要是基于Si、Ge等禁带宽度相对较宽
碲镉汞由于其高量子效率、高工作温度范围、禁带宽度连续可调、电子迁移率高等优点成为高速、高分辨率、高光谱探测应用领域最具竞争力的红外探测材料。随着第二代碲镉汞红外焦平面技术逐步进入实用化和产品化,第三代碲镉汞红外焦平面技术的研究也随之展开。当前,红外探测系统的发展方向是更小尺寸(Size)、更低重量(Weight)、更小功耗(Power)、更低价格(Price)和更高性能(Performance),
红外偏振探测可增强微弱目标的探测,大幅抑制云雾和杂散光的干扰,提高目标清晰度,在遥感探测、气象监测、抗干扰成像、分子手性检测和空间光通信等领域具有重要应用。在多种红外偏振探测途径中,片上集成的像元分离型偏振探测器可实时对目标探测,避免机械运动,具有结构简单,稳定性高,集成化,小型化的优点。圆偏振探测在抑制云雾以及杂散光的气象监测、手性分子检测和空间光通讯等领域具有重要应用。但是,新型的微型圆偏振器
单光子探测在激光雷达三维成像、激光测距、荧光寿命成像、激光通信等领域具有广泛应用前景。工作在盖革区的雪崩光电二极管,单个光子即可触发二极管雪崩,产生雪崩电流,是一种很好的单光子器件。基于盖革雪崩光电二极管(GM-APD)焦平面的单光子探测系统具有灵敏度高、探测距离远、测距精度高等特点,它通过计量光子飞行时间实现距离探测。集成时间-数字转换电路(Time to Digital,TDC)的读出电路(R
红外探测系统的重要发展方向之一是“SWaP”,也就是更小的体积、更轻的重量和更低的功耗。而红外光电探测器由于禁带宽度窄,一般工作在液氮温区,制冷系统是带来探测系统体积功耗的主要原因。因此,提高红外探测器的工作温度并且降低制冷系统的功耗和体积,可以推动红外探测技术在便携式手持装备等小型化设备方面的发展和应用。红外探测器在高工作温度下面临的两个主要问题:首先,探测器的暗电流是温度的指数函数,随着温度的
碲镉汞红外探测器具有波段覆盖宽、灵敏度高等优越性能,是航天遥感、天文科学等领域的红外探测的首选。随着红外探测与成像的空间分辨率不断提升,红外探测器规模不断扩大,但因其低温热失配引发的可靠性问题愈加严重。为此,本文重点开展大面阵芯片面形校正、低热应力结构设计等可靠性技术研究,具体研究内容如下:1.实现了大面阵红外焦平面探测器的结构优化设计。通过对探测器的结构尺寸进行优化以及材料参数合理选择等方法来减
近年来,超大规模线列红外焦平面探测器组件在气象、资源、环境及天文等领域有着重要的应用。受背景噪声抑制的限制,红外探测器往往需要在100K以下的低温工作。随着系统应用对大视场、高空间分辨率及高时间分辨率等需求的不断提高,单个探测器模块规模的发展已不能满足设计指标要求,需要将几个甚至几十个探测器模块在杜瓦组件内集成,而探测器模块的热匹配性、组件杜瓦的传热及轻量化等问题凸显。因此,发展超大规模线列红外焦
科技发展的本质是人类不断探索和认识世界的过程。红外天文探测器是人类探索外太空世界的有力工具,其重要性不言而喻。阻挡杂质带(Blocked Impurity Band,BIB)红外探测器凭借其优异的探测性能,已成为目前中、远红外天文探测领域的主流探测器,被广泛应用于各种大型天文探测平台上,如宇宙背景探测器(Cosmic Background Explorer,COBE)、斯皮策(Spitizer)太