【摘 要】
:
应用小波基求解微分、积分方程已经取得了许多重要成果。Jia和liu构造了Sobolev空间H01(0,1)的Hermite样条小波,并应用它们求解了一类Sturm-Liouville方程。本文借鉴上述工作,
论文部分内容阅读
应用小波基求解微分、积分方程已经取得了许多重要成果。Jia和liu构造了Sobolev空间H01(0,1)的Hermite样条小波,并应用它们求解了一类Sturm-Liouville方程。本文借鉴上述工作,利用Hermite三次样条构造了另外一对支集含于[-1,1]的小波,其中一个对称另一个反对称。进一步,应用Jia和Liu的方法得到了Sobolev空间H01(0,1)的小波基,且具有简单的边界小波构造。我们尝试应用这种小波基求解一类带边值的四阶常微分方程。本文最后一部分给出两个负面结论,它部分地解释了本文第二部分中小波构造的思路。
其他文献
本篇博士学位论文主要应用黎卡提变换和不等式技巧研究二阶差分方程(系统)的振动性及相关问题,全文由如下九部分组成. 第一章简述了问题产生的历史背景及其研究意义.二阶(
我们知道度量化定理是拓扑学的重要定理之一,推广度量空间的主要方法是从度量化定理出发,用各种方式方法减弱其条件.例如,由Nagata—Smirnov—Bing的度量化定理出发将其条件减弱
本文主要针对单叶函数的一些子族进行研究.全文共分五章. 第一章,我们简要地介绍了单叶函数论发展的背景以及本文可用到一些定义和记号. 在第二章,结合口次星形函数的几何性
本文对惟一延拓性与Cauchy问题进行了研究,探讨了拟微分算子的惟一连续性和Cauchy问题的解的惟一性。在这个过程中,找到了使得一类算子是Fredholm算子的条件。在这篇文章中,我们
在神经动力学中,神经元放电节律模式(即动作电位(脉冲)峰峰间期(inter-spike intervals,ISIs)的时间模式)被认为在神经元信息处理过程中起着关键作用,因而研究神经元ISI的产
本学位论文讨论了一类数据不确定的非线性规划的鲁棒优化问题.首先推导了它在一般不确定集下的鲁棒对应形式,之后当它定义在由一系列凸不等式定义的闭凸集下时,利用凸分析的知
本文分为两部分:第一部分为拓扑学的内容,第二部分为粗代数理论的内容.
第一部分:文[3]李进金定义了相对乘积空间,使不同的LF空间可以进行乘积运算.本文利用广义Zadeh忍型函数