【摘 要】
:
光催化产氨反应能够有效利用空气中充足的氮气,缓解传统合成方法导致的全球变暖等问题。催化剂表面受光激发产生的载流子激活N2分子中的N-N键,并与来自水的质子结合转化为NH3分子。BiOCl具有独特的层状结构、无毒、化学性质稳定等优势,但因光生载流子分离效率低、禁带宽度较大、光吸收程度较弱、比表面积较小等弱点限制了其在固氮领域的应用。针对这些问题,本文采取调控物相结构、表面形貌和构建异质结构的方式对B
论文部分内容阅读
光催化产氨反应能够有效利用空气中充足的氮气,缓解传统合成方法导致的全球变暖等问题。催化剂表面受光激发产生的载流子激活N2分子中的N-N键,并与来自水的质子结合转化为NH3分子。BiOCl具有独特的层状结构、无毒、化学性质稳定等优势,但因光生载流子分离效率低、禁带宽度较大、光吸收程度较弱、比表面积较小等弱点限制了其在固氮领域的应用。针对这些问题,本文采取调控物相结构、表面形貌和构建异质结构的方式对BiOCl基材料进行改性研究,主要内容如下:1.利用常温水解和高温缩聚法,调控反应物质量比、煅烧温度、煅烧时间和升温速率等实验参数合成g-C3N4/BiOCl异质结复合材料。结合SEM、XRD、XPS、BET比表面积测定、紫外可见漫反射光谱、光电流响应和Mott-Schottky等测试手段对复合材料的表面形貌、晶型结构及光电化学性能进行表征。研究结果发现,在最优化的实验条件下g-C3N4/BiOCl复合材料呈二维片状结构且结晶性良好,比纯BiOCl的比表面积增大了33倍,为光催化固氮反应提供更多的活性位点。同时,g-C3N4/BiOCl复合材料的光吸收范围被延伸至可见光区,形成了“Z”型半导体异质结构,促进光生电子空穴对有效分离,增大光催化固氮活性。g-C3N4/BiOCl产氨率达到144.1μmol/gcat/h,而纯g-C3N4和BiOCl的产氨率为63.61和1.78μmol/gcat/h,固氮效率分别提高了2.3和81倍。2.为进一步增强BiOCl基材料的光电响应强度及导电性,采用一步溶剂热法制备W18O49/BiOCl异质结构光催化剂。优化反应溶剂、反应物摩尔比、溶剂热温度、溶剂热时间等实验参数确定最佳合成条件。结合XRD、SEM、XPS、比表面积测定及电化学阻抗、Mott-Schottky等测试手段发现,W18O49/BiOCl复合材料呈规则有序的束状结构。在紫外和可见光范围的光吸收能力均得到提高,能够产生更多光生电荷。同时,p-n异质结的形成有利于光生载流子的分离和迁移,光电流强度比纯BiOCl提高了3倍。W18O49/BiOCl异质复合光催化剂的产氨率为246.7μmol/gcat/h,相比纯BiOCl提高了138倍。
其他文献
氮化硅陶瓷(Si3N4)因其出色的力学性能和热稳定性,在室温和高温下都具有良好的应用前景。但由于其具有脆性断裂的特点,加工性能差,在制备结构复杂的氮化硅部件方面仍然面临技术上的挑战。利用活性金属钎焊技术将陶瓷-金属进行连接能在一定程度上解决这一问题。但Si3N4与金属之间的较大的热物理性能差异(尤其是热膨胀系数)使得钎焊后的接头中存在较大残余应力,导致接头力学性能变差。因此缓解接头残余应力对提高陶
随着飞机飞行马赫数和增压比不断增大,对航空发动机的冷却系统提出了更高要求。目前,采用航空燃油作为冷源对航空发动机中子系统进行冷却是一种可靠且高效的冷却方法,但是航空燃油在受热至150℃之后会发生热氧化结焦反应,会在管道内部产生结焦。本文在分析国内外热氧化结焦的研究基础上,以增强管道换热性能和减少管道结焦为目的,以蛇形管作为研究对象,通过理论分析、实验研究和仿真计算相结合方式对蛇形管内航空燃油的氧化
随着科学技术的进步,发展具有多功能、低功耗、高精度、高可靠性的微型智能化器件成为了科技发展的新趋势。在空间技术、生物医疗等领域,钛合金因其优异的物理性质和生物相容性成为应用十分广泛的金属材料。高效地在钛合金材料上加工具有一定精度和表面质量的微小结构成为发展的关键。因此,为了拓展钛合金材料在微细加工领域的加工工艺,本文开展的针对钛合金材料的微细电火花铣削和微铣削组合加工工艺的研究。本文根据Ti-6A
保加利亚乳杆菌被用于世界范围内各种发酵乳制品的生产,其在作为发酵剂的制备过程中,以及在实际的发酵过程中,渗透压、温度、p H和营养可用性的波动会限制菌体的分裂增殖能力从而降低其发酵性能,影响乳制品的质量和风味。目前,保加利亚乳杆菌在乳品发酵工业中常处于盐胁迫环境中,涉及乳酸菌盐胁迫下分裂机制的研究仅是对代谢相关基因和蛋白质变化的分析,而对菌体响应盐胁迫环境对分裂体的作用鲜有研究。本文通过研究保加利
氟化硼二吡咯甲川(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene,BODIPY)荧光染料具有优良的光化学和物理特性,引起了研究学者的广泛关注。但是因其吸收和发射谱的波长短,荧光量子产率偏低等缺点,使其在实际应用方面受到限制。因此,优化设计优良光学性能的新型BODIPY荧光染料具有重要意义。本论文通过密度泛函理论分析了取代基与杂原子在扩大的π共轭体系中对BODI
碳钢作为一种重要的工程材料,具有较低的成本,较好的力学性能,广泛应用于各个领域,但其极容易发生腐蚀,会明显降低碳钢产品的使用寿命,提高产品维护成本。针对这一问题,本文在碳钢表面制备聚二甲基硅氧烷/硅藻土超疏水涂层,对其进行有效的腐蚀防护,并且通过添加纳米填料使涂层的综合性能进一步提高。研究了聚二甲基硅氧烷与硅藻土的比例、溶剂体积、浸涂次数三个工艺参数对涂层微观组织结构的影响规律,探讨了涂层形成机制
茂金属聚丙烯材料(mPP)是一种发展迅速的热塑性合成树脂,凭借其密度小、无毒、易加工成型和机械性能优良等优点,已经深入人们生活中的各个领域,包括出行、家用以及生产如家用电器、汽车行业、建筑行业等,这也促成聚丙烯成为我国第二大消费产品。由于我国能源结构主要包括煤炭、石油以及天然气,由于能源的不断消耗和大量使用,需要对我国的能源结构进行优化,对聚丙烯行业的需求也慢慢有所提升。与以往的石油需求相比,如今
化石能源供应的紧缺性和日益严重的环境问题迫切要求寻找一种可持续的绿色能源。氢能被认为是解决这一问题的最具潜力的替代能源之一。电解水是一种绿色高效的制氢法,但由于电解水的两个半反应,析氢反应(Hydrogen evolution reaction,HER)和析氧反应(Oxygen evolution reaction,OER),存在较高的能垒,目前电解水产氢的效率并不高。虽然Pt基和RuO2/Ir
化学链技术能够提高能量利用效率、降低氮氧化物排放,具有独特的CO2内分离特性,是一种清洁高效的能源转化手段。Cu基载氧体和Fe基载氧体是化学链中常用的载氧体,Cu与Fe复合可以改善Fe基载氧体的反应活性,且能抑制Cu的烧结,具有良好的协同作用。DFT可以从分子层面描述载氧体自身的结构变化以及其与固体燃料之间的反应,对深入探究协同机理,设计更优的载氧体具有重要意义。本文建立了煤焦模型和氧化铁团簇模型
pH响应膜是一种对外界环境pH值变化具有刺激响应和自我调节功能的智能膜。当外界环境pH值发生变化时,具有pH响应功能的聚合物发生构象变化,通过改变膜的孔径大小,影响其渗透性能。pH响应膜可以适应不同环境,作出相应的性能改变,在药物控制释放、水处理和化学阈等多个领域受到广泛关注。本文通过原子转移自由基聚合(ATRP)的方法将具有pH响应性的单体甲基丙烯酸二甲氨乙酯(DMAEMA)接枝到聚偏氟乙烯(P