功能梯度材料的多尺度建模

来源 :苏州大学 | 被引量 : 0次 | 上传用户:y4o1999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究梯度功能材料(FGM)的多尺度建模。梯度功能材料是一种可以应用于多个领域的复合材料。我们首先在均匀化理论框架下,对于具有周期性微观结构的复合材料,由微观模型利用渐进展开的方法得到宏观模型,并给出了该多尺度模型相应的收敛性分析。然后,对于具有一般微观结构的FGM,在异质多尺度方法(HMM)框架下,给出了由微观模型估计宏观参数的算法。在材料具有微观周期结构的情况下,我们给出了其HMM解和均匀化解之间的误差分析。最后,我们给出一个算例,即对某种给定的复合材料分别用上述两种方法得到宏观模型,并求解比较以验证我们的结论。
其他文献
本文主要围绕太阳升起引理展开,首先介绍了Lebesgue定理和关于极大函数的一些基础知识,并且对Lebesgue定理进行了详细的证明,为了之后要介绍的Hardy-Littlewood函数的一个重要性
目前,随着微电子机械系统传感器和微型泵这样的微型设备的迅速发展,微流体在这些设备中的传热现象已成为非常有吸引力的研究领域.其中,具有流动方式连续、结构简单等特点的电渗
本篇文章由两部分构成.在第一部分中,考虑带有投资利息与负债利息的复合泊松风险模型,我们利用方程的思想,通过推导微分积分方程并且考虑模型的索赔是指数随机变量的情况,推
本文首先提出了Felbin模糊赋范线性空间上一类模糊有界算子的模糊范数的定义,指出了此类模糊有界算子构成模糊赋范线性空间,研究了此空间赋此模糊范数的拓扑结构和完备性。然后
哈密尔顿系统在天体力学、等离子物理、光学和分子动力学等领域具有重要的应用。哈密尔顿系统具有许多内在的性质,其重要特征之一是相空间的面积和体积的不变性。因此,在数值求
试验设计是以概率论和数理统计为理论基础,经济地,科学地安排试验的一项技术.在工业生产和工程技术设计中有广泛的应用.最优设计是试验设计研究的一个重要分支和热点.近年来最
有限元模型修正是结构健康监测的核心内容之一。按照求解方法,有限元模型修正可以分为矩阵型修正法和参数型修正法。本文采取参数型修正法,对结构参数弹性模量E进行修正。本文
常微分方程定性理论已成为天体力学,航天技术以及卫星通讯等尖端领域研究中不可缺少的数学工具,且在生物,医药,现代化学和物理等领域中也得到了广泛的应用.而在定性理论的研究中,
在微分方程理论与应用研究中,边值问题一直是微分方程研究领域的重要课题之一,其中带有p-Laplacian算子的微分方程边值问题是其最重要的推广之一。本文研究了带p-Laplacian算子
生物数学对人类的生产发挥了巨大的作用。生物动力学作为生物数学的一个重要分支,将生态学与动力学相结合,已经广泛的运用在生命科学的研究当中。生态动力学将群体间、群体与生