静电纺丝聚丙烯腈锂离子电池隔膜的改性及其性能研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:sashiu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来锂离子电池应用广泛,移动电源、电动自行车和电动汽车自燃甚至爆炸的事件此起彼伏,这对锂离子电池的安全性提出了更高的要求。锂离子电池通常由正极片、负极片、隔膜和电解液组成。在电池热失控过程中,由于外部设计缺陷而导致的短路发生的概率低于电池内部短路。隔膜在热失控过程中起着不可或缺的作用,主要起着分隔正负极防止正负极直接接触短路的作用。随着大规模电能储备和高续航能力电动汽车的需求不断增长,锂离子电池的能量密度和功率密度的提升也迫在眉睫。纳米尺寸结构的电池隔膜有着高表面积与体积比、高的孔隙率和更短的离子传输距离,能满足电池能量密度和功率密度提升的需求。静电纺丝制备的锂离子电池隔膜能很好的满足这些要求。本文选择聚丙烯腈(PAN)作为基膜的骨架,通过静电纺丝技术制备出PAN纤维膜,然后选择酚氧作为粘结剂通过将静电纺丝PAN纤维膜浸泡在5wt%的酚氧溶液引入酚氧来增强纤维膜的力学性能。纯PAN纤维膜的拉伸强度只有2.68MPa,而经过酚氧改性之后的PAN(20)复合隔膜的拉伸强度有13.41MPa,能满足实际应用需求。酚氧的增加也不会降低PAN(20)复合隔膜的热性能,PAN(20)复合隔膜的DSC曲线显示它的熔点为309℃,与PAN纤维膜熔点一致,热收缩实验结果也表明酚氧不会降低PAN(20)复合隔膜的热稳定性。酚氧的添加会降低隔膜的孔隙率和吸液率,导致PAN(20)复合隔膜的离子电导率(1.72 m S/cm)和界面电阻(471Ω)均低于PAN纤维膜的离子电导率(1.98m S/cm)和界面电阻(439Ω)。PAN(20)复合隔膜在高倍率5C和7C的充放电下,有着更高的放电比容量94.8m Ah/g和78.5m Ah/g,容量保持率分别为66.4%和55.0%(基于0.2C下的放电比容量)。PAN(20)复合隔膜在0.5C恒电流充放电循环过程中也有着98.7%的容量保持率,展现了良好的高倍率容量保持率和循环稳定性。除了保证复合隔膜有足够的力学强度之外,需要提升PAN(20)复合隔膜其他的性能。随后选择ZSM-5型沸石作为无机填料来改善PAN(20)复合隔膜的整体综合性能。作为一种具有独特的孔洞结构和强路易斯酸性的无机颗粒ZSM-5,复合隔膜的电化学性能在加入ZSM-5后得到全面提升。Z/PAN-1.5复合隔膜的离子电导率高达2.10 m S/cm,吸液率为308.1%,孔隙率为68.3%。Z/PAN-1.5复合隔膜的界面电阻为331Ω,在高倍率5C和7C下的容量保持率高达75.2%和68.2%(基于0.2C下的放电比容量)。由Z/PAN-1.5复合隔膜组装的电池在0.5C下循环100圈后电池比容量几乎不衰减,有着更好的循环稳定性。
其他文献
氢气是解决能源危机问题的重要突破口。然而由于其易燃易爆等性质,在储存、运输和使用过程中都存在相当大的安全隐患。气体检测成为了解决这一问题的关键,Zn O气敏传感器凭借其灵敏度高、制备简单、成本低、物理化学性能稳定等特点,是最常见的传感器之一。选择性是衡量气敏传感器性能的重要指标之一,只有精准的检测在环境气氛中的目标气体才能使传感器拥有较高的实用性及商业价值,因此提高气敏传感器的选择性是本文的研究重
学位
由于碳基材料易合成,物理化学性质稳定和原料丰富,它们被认为是碱金属离子电池最具潜力的负极材料。然而,有限的活性位点阻碍了容量的提升,而且大的离子半径(如钠离子、钾离子)极大地限制了离子在电极材料内部的快速扩散,造成了缓慢的反应动力学。因此,如何对碳基材料进行结构设计以实现高效的电化学性能,是实现碱金属离子电池进一步应用的挑战。在本课题中,本文分别通过对碳基纳米片进行复合结构和微观结构调控设计,并作
学位
经过近10年的发展,钙钛矿太阳能电池的效率已经从最初的3.8%提升到目前的25.5%。钙钛矿太阳能电池可以分为有机-无机杂化钙钛矿太阳能电池和无机钙钛矿太阳能电池两种。前者虽然效率较高,但是热稳定性比较差。后者具有很高的热稳定性,且非常适合制备硅-钙钛矿叠层太阳能电池。虽然目前效率较低,但是研究价值和实用性较高。目前无机钙钛矿薄膜制备工艺相对复杂,晶体质量不高,且电池通常采用昂贵且不稳定的有机小分
学位
镓酸镁尖晶石材料具有优异的光学性能和介电性能,在光学通讯、固体激光器、光致发光、系统集成光电领域拥有广泛的应用前景。然而,目前的研究均集中在粉体、微波介电陶瓷以及单晶,对镓酸镁尖晶石固溶体透明陶瓷的研究尚未开展。本论文采用固相反应法合成颗粒细小均匀的纯相粉体,然后通过干压结合冷等静压成型出陶瓷坯体,采用无压预烧结合热等静压烧结制备了镓酸镁尖晶石固溶体透明陶瓷。同时,结合晶体结构分析、键价模型与实验
学位
环境污染和能源危机是当今人类社会发展需要解决的重大难题,新型可持续能源装置的开发已经迫在眉睫。燃料电池因具有环境友好、清洁高效等优势被认为是最有前景的能源装置之一。其中,氧还原反应(ORR)作为重要的半电极反应,其缓慢的动力学限制了燃料电池的进一步发展。目前,铂基催化剂是唯一可行的商业化ORR电催化剂,但是贵金属铂的稀缺性、高成本、低稳定性限制了其大规模应用。最近,高效且廉价的非贵金属基催化剂快速
学位
在能源危机和环境污染的背景下,发展新型能源转换器件已经成为社会快速发展的迫切需求之一。可充锌空气电池作为一种新型的能源转换器件,具有低成本、高储量和高能量密度等优势而受到科学研究者们的关注。可充锌空气电池的空气电极在放电过程中发生氧还原反应(ORR),在充电过程中发生析氧反应(OER)。然而OER和ORR的动力学反应过程较为缓慢,这大幅度降低了可充锌空气电池的能量转换效率。所以,合理设计适用于OE
学位
随着能源危机和环境恶化的不断加剧,金属空气电池和燃料电池等清洁能源技术因其巨大的应用前景而不断革新。氧还原反应(ORR)是这些电池技术中重要的反应。然而,ORR的动力学迟缓,是这些电池进一步发展的桎梏。目前,铂基催化剂由于其高的ORR活性而备受关注,但其匮乏的储备和不菲的价格严重影响了它们的大范围商业化。金属酞菁材料,是典型的M-N4中心大环结构化合物,其大环上带有18个π电子可以保证电子的快速传
学位
研究和利用清洁可再生能源,如氢能、太阳能、风能、水能、潮汐能等,可有效避免由于消耗传统化石能源所造成的环境污染,并缓解能源危机。目前,电解水技术被认为是一种环境友好的制氢途径。其中,电催化剂由于能够提高化学转化的速率和效率,因而发挥着至关重要的作用。阳极析氧反应(oxygen evolution reaction,简称OER)是电解水过程中的一个关键半反应,但由于其缓慢的四电子转移动力学,严重限制
学位
偏钛酸镁微波介质陶瓷(MgTiO3)发展迅速,已成为微波领域的研究热点。传统的滤波器一般通过“成形-烧结”的工艺制备。其中,高温烧结是陶瓷坯体致密化和强度提升的关键步骤,直接影响MgTiO3陶瓷滤波器产品力学性能和尺寸精度。高温烧结工艺复杂,制件烧结后易产生变形、开裂、性能差异等缺陷,通过反复烧结的经验试错法效率低、成本高,因此,有必要采用有限元技术对MgTiO3陶瓷烧结过程进行数值模拟。本文基于
学位
随着能源消耗和供给不足,人们在探寻新能源的同时也意识到自身运动产生的能量也可以加以利用。目前大量的电子产品正在向着小型、轻便、易携带的方向发展,正好可以利用这些能源。为了更好的使用这些能量资源,可以采用具有压电性能的材料将其转化为电能。作为聚合物压电材料的聚偏氟乙烯(PVDF)是比较好的选择。但聚合物材料的压电性能较低,需要对其进行性能提升。对纯PVDF膜而言,通过提高β晶型含量来提高压电常数是常
学位