论文部分内容阅读
随着电力电子技术和微处理器技术的进步,高性能电力开关元件和MCU、DSP等被不断地应用到弧焊电源领域,弧焊电源的数字化和智能化成为了当前研究的热点。智能弧焊电源具有参数一元化、参数自动生成、参数存储和自学习、多功能集成、工艺灵活控制、高精度控制和人性化操作界面等特点。本课题针对弧焊电源的国内外研究现状,对数字化焊接电源进行了优化控制,设计了焊接专家系统,研制出了基于不同控制核心的Power Pulse?Ⅰ型和Power Pulse?Ⅱ型智能弧焊电源。本文首先介绍了智能弧焊电源在国内外的研究和发展现状,分析了P-GMAW、DP-GMAW、熔滴过渡控制、弧压控制、波形控制、多功能整合、参数一元化和专家系统等关键技术,明确了课题研究的重要任务。文中第二章讨论了智能弧焊电源的总体设计方案。在功率电路拓扑的设计上,采用全桥逆变结构,并使用IGBT和非晶态变压器作为主要器件。针对不同的工艺要求和应用场合,提出了“MCU+硬件驱动”和“DSP集成控制”两种控制核心设计方案。设计了信号反馈和调理、PWM信号产生、IGBT驱动、送丝电路、各类信号检测电路,以及独立的人机交互系统,从而实现了硬件的模块化设计。针对智能弧焊电源的特点,设计了电源的系统控制软件。重点提出了P-GMAW、DP-GMAW工艺中的变频弧长控制,并引入了FIFO的队列结构,用于计算平均电压。设计了基于软件握手的人机交互系统通信协议,可以实现与主控板的准确、快速通信。创新性地提出了基于大步距标定和局部Newton插值算法的参数自调节方案,论述了参数的多属性存储原理。搭建了完整的智能弧焊电源实验平台,对电源的恒流、恒压特性(包括静态特性和动态特性)进行了详细的测试,还对送丝系统进行了测试,获得了控制量与送丝速度的对应关系。对弧焊工艺的各过程控制进行了优化。分析了连续PID控制的特点,并用实验法对PID参数进行了整定,获得了最佳的PID参数。分析了自适应模糊PID控制的原理,用MATLAB对该算法进行了仿真,证实了算法的有效性。此外,优化了起弧控制,采用特殊波形起弧,大大提高了起弧成功率。采用输出端滤波降压控制,可以将输出电压控制在理想的水平。重点论述了熔滴过渡优化控制,对各种不同焊丝的一脉一滴临界电流曲线进行了标定。通过大量工艺试验,对CO2焊钢、P-GMAW焊钢、DP-GMAW焊铝等工艺的焊接参数进行了大步距标定。并且通过试验证明了基于大步距标定和局部Newton插值的参数自调节算法的有效性。