基于深度学习的抗音调干扰LDPC码的译码算法研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:alexzhujun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
复杂电磁环境下的卫星通信链路受到来自低轨卫星或地面站的特定干扰后,会降低其通信的有效性和可靠性。因此,在干扰存在的情况下提高通信的可靠性和有效性是卫星通信领域的研究热点和难点问题。本文从深度学习的角度入手,把深度神经网络结构与LDPC码的并行迭代译码结合起来,来研究在音调干扰信号存在的情况下基于神经网络的译码算法。
  本文首先对音调干扰信号进行了分析,并研究了音调干扰信号的时域特征以及频域特征,建立了音调干扰信号的数学模型。介绍了LDPC码的基本概念和置信传播译码算法原理,并分析了音调干扰信号对LDPC码译码算法性能的影响。实验结果表明,音调干扰信号影响LDPC码译码算法的译码性能。
  然后从深度学习的角度入手,将深度神经网络结构与LDPC码的迭代译码算法结合起来,验证所搭建的神经网络结构进行LDPC码译码的可行性。从神经网络输入输出的关系与LDPC码中Tanner图中变量节点和校验节点的关系之间相对应提出了多层感知机网络结构,用生成的数据样本对网络结构进行了训练和测试,分析隐藏层数的不同对LDPC码译码性能的影响,确定性能比较好的基于多层感知机神经网络的译码结构。实验结果表明该网络结构译码的可行性,并且在音调信号干扰存在的情况下,与置信传播译码算法相比,基于多层感知机神经网络的LDPC码的译码性能比较好。
  最后,根据其译码的本质类似于分类的过程我们提出了卷积神经网络。搭建了基于卷积神经网络的LDPC码的译码结构,验证了不同的卷积层数、不同的卷积核的大小对LDPC码译码性能的影响,确定性能比较好的网络结构。并验证了在音调干扰信号存在的情况下,卷积神经网络译码的译码性能要好于置信传播译码算法。多层感知机神经网络和卷积神经网络这两个结构进行译码不仅降低了LDPC码译码的复杂度还具有很好的译码性能。最后并对比分析了这两种神经网络进行LDPC码译码所适用的不同场景。
其他文献
增龄导致的女性生殖能力下降以及胎儿染色体异常的增加是目前困扰女性生殖健康的最大挑战。女性生育力下降与卵巢储备及卵细胞质量的下降密切相关。在女婴刚出生时,其卵巢中卵细胞数量接近100万枚左右,但是在女性一生中,仅仅只有约500枚卵细胞排出,这只占卵巢中卵细胞总数的0.1%,而剩下的约99.9%卵细胞是白白损耗掉,并且这种损耗的机制尚不明确。卵泡池损耗从女婴约1-3岁开始直到女性约51-52岁卵巢储备
学位
卵巢癌目前是全球妇科疾病中最致命的癌症,也是女性癌症死亡的原因之一,5年生存率在15%到25%之间。目前的治疗方案主要包括肿瘤切除术和化疗。化疗药物首选铂类药物,然而卵巢癌患者极易对铂类药物产生耐药性。因此,研究卵巢癌耐药机制,对改善卵巢癌的治疗现状具有重要的意义。我们之前的研究表明MCT4在卵巢癌组织高表达,参与卵巢癌的能量代谢,能够将卵巢癌糖酵解产生的乳酸排出细胞,维持癌细胞的恶性表型。有研究
学位
黄土高原的土壤水储量和植被恢复之间相互影响,其状态变化是生态学、土壤学和地理学关注的热点,也是该区生态文明建设的重要基础性工作。本研究利用黄土高原土壤水储量和降雨量之间的关系,建立归一化土壤水分指数(NSWI, Normalized Soil Water Index),通过土壤水分指数的动态变化和对应降雨量的年变化,推断2001-2016年黄土高原土壤的逐年干湿趋势;结合地表水量平衡近似方程和植被
CRISPR-Cas是广泛存在于古菌和细菌中的获得性免疫体系,由小RNA介导Cas蛋白保护它们的宿主细胞免受移动遗传因子(mobile genetic element, MGE)的入侵。这一原核生物免疫系统可分为两大类,六个不同的类型。研究表明,I,II,V型CRISPR-Cas系统编码小RNA介导的靶标DNA干涉活性,VI型系统编码小RNA介导的靶标RNA和靶标RNA激活的RNA干涉活性,然而I
基因毒性抗生素阿嗪霉素B(azinomycin B)是从链霉菌(Streptomyces sahachiroi)中分离到的杂合聚酮-非核糖体多肽类抗生素,含有一个高活性的环氧基团和一个罕见的氮杂双元环,可亲核攻击5′-d(PuNPy)-3′序列中嘌呤碱基的N7位形成DNA链间交联,使得该抗生素具有强烈的细胞毒性和广谱的抗癌细胞活性,具有开发成为新型肿瘤化学治疗剂的潜力。阿嗪霉素B是一种强烈的DNA
学位
研究背景与目的:甲型流感病毒依据其致病性强弱分为高致病性或低致病性,以往爆发的H5N1,H7N9和H7N7高致病性甲流疫情,死亡率高达30%以上。而低致病力甲流病毒pdm09H1N1爆发,感染患者大部分可以自行痊愈,死亡率低于0.05%。高致病性甲流的致病机制一直是研究的热点,大量研究发现免疫系统对病毒感染的过度反应,是甲型流感病毒的主要致病机制。高致病性甲型流感病毒可以引发“细胞因子风暴”,宿主
DNA测序技术的发展有着短暂且丰富的历史,在短短的40多年中有着众多飞跃式的发展。从Sanger的电泳法测序技术,以高成本、低通量、长读长、高精度等特点打开生物测序的大门;到NGS大规模平行测序,以低成本、高通量、短读长、高精度等特点成为生物测序的中流砥柱;再到目前正引领新潮流的单分子实时合成测序如PacBio和Nanopore,以高通量、超长读长、低精度等特点开创生物测序的新时代。DNA测序技术
学位
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)是结核病(Tuberculosis)的胞内致病菌,其在人体内的宿主细胞主要是巨噬细胞。Mtb和宿主之间蛋白-蛋白的相互作用在感染和免疫中起着重要作用。本研究利用Mtb强毒株H37Rv和弱毒株H37Ra分别刺激巨噬细胞,提取巨噬细胞全蛋白与Mtb全蛋白芯片相互作用,筛选出了283个差异蛋白,这些差异蛋白可能与Mtb的毒性相关
端粒是真核生物线性染色体末端的核糖核蛋白结构。因为其结构的特殊性,位于端粒或亚端粒区域的基因通常处于转录表达沉默状态。在裂殖酵母中,由dsDNA结合蛋白Taz1,ssDNA结合蛋白Pot1,端粒酶招募蛋白Ccq1以及桥连蛋白Rap1-Poz1-Tpz1构成的保护复合物-Shelterin在染色体末端端粒稳态的维持、异染色质状态的维持以及末端结构的保护等过程中有重要作用。这些蛋白在结构和功能上与人源
学位
光电化学电池将太阳能转化成电能和化学能(如氢能),能有效地解决能源和环境污染问题,显示了可持续发展的前景。本文研究了可将太阳能转换成电能的液结太阳能电池和可将太阳能转换成化学能的光电解电池。纳米TiO薄膜电极作为上述电池的光阳极,通过优化获得了较高光电压和光电流的太阳能电池,并且利用太阳能电池得到的电能,作为光电解池的偏压,光解水制得氢气;另外还设计了新型的离子隔膜双室光电解池,无需偏压即可制得氢