Cartan型模李超代数与交换李超代数的表示

来源 :哈尔滨工业大学 | 被引量 : 2次 | 上传用户:mangshengsun1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
李超代数是一类重要的非结合超代数,与众多数学分支有紧密联系,并有深刻物理背景.根据基域特征,可分为模李超代数(基域特征为素数)及非模李超代数(基域特征为0).本文主要研究Cartan型模李超代数的表示与特征零域上交换李超代数的极小忠实表示.主要工作如下:  首先,利用根反射给出Cartan型模李超代数的限制Kac模不可约性的充要条件.主要方法是:将相关代数的限制不可约模转化为限制Kac模的不可约顶部(head),再利用根反射得到一系列限制Kac模,用首权之差刻画其相应的不可约顶部之间的同构.进一步用典型权的语言刻画相关代数的限制Kac模不可约性.  其次,利用有理模范畴给出Cartan型模李超代数的限制不可约模的特征标公式.主要方法是:利用限制Kac模的不可约顶部之间的同构及最高权向量,给出限制Kac模的合成因子及重数,从而借助限制Kac模的相关短正合列,得到相关代数的所有限制不可约模的特征标公式以及维数公式.  第三,利用 p-特征标高度及χ-既约Kac模的PBW基定理,刻画Cartan型模李超代数的某些非限制表示.主要方法是:将相关代数的非限制不可约模转化为χ-既约Kac模的不可约顶部,再根据p-特征标的特点将问题转化为p-特征标矩阵的秩,将带有奇异p-特征标及?-可逆非奇异特征标的非限制不可约模的分类等理论转化为典型李超代数的非限制不可约模的相关理论.  第四,利用矩阵相似变换等理论将给出特征零域上有限维交换李超代数的极小忠实表示维数.主要方法是:利用线性代数基本理论将问题转化为由上三角矩阵组成的交换子代数的极大维数,从而得到交换李超代数忠实表示的极小维数.最后,利用相似变换来计算特征零域上一般线性李超代数的极大交换子代数.主要方法是:借助两类相似变化得到一般线性李超代数的交换子代数维数达到最大的充要条件,从而给出一般线性李超代数的极大子代数在共轭意义下的分类,同时也给出Nice交换李超代数的所有极小忠实表示.
其他文献
微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要
面板数据又称平行数据,是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。在经典的计量经济学中,作为样本观测值,或者是截面数据,或者是时间序列数据
学位
商业贿赂严重影响市场经济中的自愿、平等、公平、诚实等基础价值,导致市场交易费用的增加、社会运行成本的增加和政府官员的腐败,最终损害了整个社会和每个消费者的利益。在
随着科学技术的发展,人们对偏微分方程的研究不断深入和拓展,涉及到生命科学、信息科学、地理与环境科学等各个领域.因此,对偏微分方程的性质与求解方法的研究具有重要的科学意
随着多媒体技术和数字通信技术的飞速发展,超大信息量之间的通讯越来越容易,为了保护数据信息不被恶意窃取,对大量数据的加密处理就变的非常必要了。虽然在不同的应用领域对加密
物流业是衡量一个国家或地区经济发展水平、产业发展环境、企业竞争力的重要标志之一。我国现代物流的发展,正在一项项的物流工程建设和各个层次物流系统运营中实现。   本
偏序半群的代数理论现今仍是最为活跃的代数学研究领域之一.本文详细地研究了纯正半群上的偏序关系.主要结果如下: 1.研究了逆半群上的amenable偏序关系.我们给出了“逆半