论文部分内容阅读
李超代数是一类重要的非结合超代数,与众多数学分支有紧密联系,并有深刻物理背景.根据基域特征,可分为模李超代数(基域特征为素数)及非模李超代数(基域特征为0).本文主要研究Cartan型模李超代数的表示与特征零域上交换李超代数的极小忠实表示.主要工作如下: 首先,利用根反射给出Cartan型模李超代数的限制Kac模不可约性的充要条件.主要方法是:将相关代数的限制不可约模转化为限制Kac模的不可约顶部(head),再利用根反射得到一系列限制Kac模,用首权之差刻画其相应的不可约顶部之间的同构.进一步用典型权的语言刻画相关代数的限制Kac模不可约性. 其次,利用有理模范畴给出Cartan型模李超代数的限制不可约模的特征标公式.主要方法是:利用限制Kac模的不可约顶部之间的同构及最高权向量,给出限制Kac模的合成因子及重数,从而借助限制Kac模的相关短正合列,得到相关代数的所有限制不可约模的特征标公式以及维数公式. 第三,利用 p-特征标高度及χ-既约Kac模的PBW基定理,刻画Cartan型模李超代数的某些非限制表示.主要方法是:将相关代数的非限制不可约模转化为χ-既约Kac模的不可约顶部,再根据p-特征标的特点将问题转化为p-特征标矩阵的秩,将带有奇异p-特征标及?-可逆非奇异特征标的非限制不可约模的分类等理论转化为典型李超代数的非限制不可约模的相关理论. 第四,利用矩阵相似变换等理论将给出特征零域上有限维交换李超代数的极小忠实表示维数.主要方法是:利用线性代数基本理论将问题转化为由上三角矩阵组成的交换子代数的极大维数,从而得到交换李超代数忠实表示的极小维数.最后,利用相似变换来计算特征零域上一般线性李超代数的极大交换子代数.主要方法是:借助两类相似变化得到一般线性李超代数的交换子代数维数达到最大的充要条件,从而给出一般线性李超代数的极大子代数在共轭意义下的分类,同时也给出Nice交换李超代数的所有极小忠实表示.