论文部分内容阅读
本论文介绍了金刚石薄膜的热灯丝化学气相合成(HFCVD)及其性质和器件化应用研究。 CVD金刚石薄膜是上世纪八十年代兴起的材料研究热点之一。它具有一系列优异的性质:极高的硬度和杨氏模量、良好的热导率、宽广的禁带宽度、较高的电子和空穴迁移率、表面负电子亲和势、抗高辐射、化学性质稳定以及安全无毒,等等。因此,它在光学窗口、切削工具和磁盘涂层、热交换(热沉和散热)、高速高温大功率半导体器件和冷阴极场发射平板显示器等领域获得了广泛的应用研究。 化学气相合成金刚石薄膜的技术包括热灯丝辅助化学气相合成(HFCVD)、微波等离子体辅助化学气相合成(MPCVD)、射频等离子体辅助化学气相合成(RF-PCVD)、直流等离子体辅助化学气相合成(DC-PCVD)、电子回旋加速谐振微波辅助化学气相合成(ECR-MP-CVD),以及燃烧火焰辅助化学气相合成(CF-PCVD)等。其中,热灯丝辅助化学气相合成(HFCVD)和微波等离子体辅助化学气相合成(MPCVD)方法由于其制备的薄膜质量较好,装置价格相对便宜,所以通常采用它们制备应用金刚石薄膜。与微波等离子体辅助化学气相合成方法相比,热灯丝辅助化学气相合成方法更适合薄膜的大面积沉积,制备的薄膜直径高达30 cm。 合成高质量的金刚石薄膜取决于对成膜机理的认识以及采用优化的生长工艺。为此,我们采用原位激光反射率测量方法,实时研究了薄膜的生长过程和确定了它的光学性质。研究的结果应用于高质量金刚石薄膜的工艺优化。制备的厚度为0.4 mm的无依托超薄X光窗口在在碳元素的k α特征峰(E=284 eV)附近的透射率高达59%,达到国际先进水平。 与传统的高质量多晶金刚石薄膜相比较,纳米金刚石薄膜表面更加光滑,表面粗糙度低达几个纳米。因此,它具有更小的光散射,更适用于光学窗口。但是,它的纯度受制备方法的局限相对较低。为了获得良好的光学透射性,既需要保持SP~3碳键的高含量,又要降低它的表面粗糙度。虽然多种抛光技术可以使它的表面更加光滑,但却昂贵与费时。因此,本论文研制了纳米晶/微晶金刚石多层膜。一系列表征测试结果表明,研制的多层膜不仅具有较高的SP~3碳键含量,而且表面光滑,表面粗糙度达到7 nm。在可见到红外光波段,它都具有更好的光学透射率,展现了良好的光学应用前景。