论文部分内容阅读
发电效率低是阻碍光伏组件大规模推广应用的主要障碍之一,研究光伏组件发电效率影响因子具有重要意义。积灰、遮挡与安装倾角可不同程度影响光伏组件发电效率,相同辐照条件下,光伏电池在同一时间段内所接收的辐照量越多则光伏组件发电效率越高。积灰与遮挡以影响光伏板面透射率的形式减少光伏电池可接收辐照量进而影响其发电效率;而安装倾角则以直接改变光伏板面可接收辐照量的方式影响光伏组件发电效率。实验研究过程中自主研制了一种光伏组件自动除尘系统,该系统结构简单、安装成本低、运行可靠、可连续有效除尘及除雪。该系统已应用于寒冷条件下的单独供电光伏模块、具有多种安装倾角的实验测试光伏模块、大面积光伏发电系统。以自动除尘系统为研究桥梁,模拟了其运行过程所产生的动态遮挡,并研究了动态遮挡对光伏组件输出参数的影响规律;分析了不同积灰量下该系统的除尘效果,并总结了除尘效果随积灰量的变化关系;优化了自动除尘系统的开启时刻与运行周期。实验光伏组件于室外开阔地面放置3、7、20天后面板积灰量分别为0.1274、0.2933、0.8493 g/m2,实验涉及光伏组件修正系数为0.9943。结果表明:自动除尘系统在横向和纵向运行过程中,清扫装置每通过1排电池组过程中光伏组件输出功率、电流及电压值均按类V形的趋势变化;系统上行相对下行过程光伏组件输出电压与电流的下降幅度分别提高18%与15%,系统上行过程对光伏组件发电效率的影响程度较大;动态遮挡面积增加1.6150%将导致光伏组件输出功率低谷值下降40%左右;横向及纵向自动除尘系统运行1年后独立光伏组件发电量分别损失1.0241、0.8034k W·h,故对独立光伏组件除尘过程而言除尘系统的耗电量可忽略,对于大容量光伏发电系统除尘过程而言该系统的累积耗电量将不容忽视,系统运行过程应根据地区与季节的不同定在日出之前10 min左右且3天运行一次;积灰3、7、20天实验中自动除尘系统运行10 min后光伏组件平均输出功率分别提高1.5171%、1.7312%和9.6021%,积灰量越大自动除尘系统运行效果越明显,本自动除尘系统可较好提高光伏组件发电效率。相同外界环境条件中不同安装倾角光伏面板积灰量不同。光伏组件存在最佳安装倾角,积灰可导致最佳安装倾角发生移动,研究积灰对最佳安装倾角的影响规律可指导光伏系统设计过程,确定最佳安装倾角可有效提高光伏发电企业经济收益。实验研究过程中分别搭建了0°~90°范围内间隔10°进行积灰规律与光伏组件输出性能测试的研究平台,分析了光伏面板积灰量、透射率、倾斜面总辐照度及实际输出功率随安装倾角的变化规律,提出了可表征积灰对不同安装倾角影响程度的无量纲参数—积灰影响度。结果表明:以90°倾角为基准,将10°作为步长并在80°~0°的降低区间中测试板积灰量的增加幅度分别为17.24%、22.41%、43.10%、62.07%、60.34%、68.97%、87.93%、91.38%、93.10%;以无积灰板为基准,入射光波长在350~770nm范围内变化时,将10°作为步长并在0°~90°的递增区间中测试板的平均透射率分别下降54.61%、27.49%、27.39%、24.16%、18.84%、19.74%、11.44%、9.61%、4.83%、4.83%,由透射率随积灰量呈负相关变化规律可知,从两种不同分析角度所得到的积灰量随倾角的变化规律一致;以获得最大发电效率为目标,理论安装倾角优势从大到小依次为30°、20°、40°、10°、50°、0°、60°、70°、80°、90°,实际安装倾角优势从大到小依次为50°、40°、60°、70°、10°、30°、90°、80°、0°、20°,积灰使光伏组件最佳安装倾角由30°移动至50°,移动长度为20°;参照积灰影响度可优化光伏组件最佳安装倾角,积灰影响度从小到大所对应的安装倾角依次为50°、40°、70°、60°、10°、30°、80°、90°、0°、20°。