【摘 要】
:
水下图像在获取海洋信息方面具有重要作用,但由于水中不同波长的光衰减速度不同,使得水下图像会产生颜色失真,水下光照强度不足会使得水下图像对比度低,这严重影响了水下图像的进一步利用,因此需要修正色偏、增强图像的对比度以获取清晰的水下图像。基于生成对抗网络的水下图像清晰化方法通过数据驱动的方式训练网络,可处理多种水下图像退化问题,有较好的鲁棒性。本文基于生成对抗网络研究水下图像清晰化问题,主要工作如下:
论文部分内容阅读
水下图像在获取海洋信息方面具有重要作用,但由于水中不同波长的光衰减速度不同,使得水下图像会产生颜色失真,水下光照强度不足会使得水下图像对比度低,这严重影响了水下图像的进一步利用,因此需要修正色偏、增强图像的对比度以获取清晰的水下图像。基于生成对抗网络的水下图像清晰化方法通过数据驱动的方式训练网络,可处理多种水下图像退化问题,有较好的鲁棒性。本文基于生成对抗网络研究水下图像清晰化问题,主要工作如下:利用条件生成对抗网络对水下图像清晰化进行了研究,在StarGAN的基础上,通过增加判别模型对水下图像进行分类,使得网络能够根据图像的不同衰减程度采取不同的增强策略;通过在生成模型中引入残差稠密块中的残差模块,增加网络深度,增强了网络提取图像高层语义信息的能力。此外,通过优化损失函数,实现了对网络输出结果的约束,使得处理后的图像与输入图像的内容和结构保持一致。所设计网络处理的水下图像在颜色和清晰度等方面都获得了显著改善。利用多尺度生成对抗网络对水下图像清晰化进行了研究,构建一种新的网络结构。通过采用多尺度的生成模型提取丰富的图像特征,提高网络的特征表达能力,然后利用多尺度的判别模型,进一步监督生成模型的训练,使得整体网络输出的高分辨率水下图像更加清晰。此外,通过权值共享策略对网络的参数进行优化,从而更有利于模型的迁移和复用。
其他文献
随着人工智能技术的深入发展,计算机视觉领域取得了大量的成果,尤其在计算机视觉识别领域,优秀的图像目标识别模型层出不穷,但是目标识别任务仍存在诸多的挑战。一方面计算机视觉识别模型的训练往往需要大量图像数据的支持,另一方面精确的图像实例级标注需要极为昂贵的人力成本。为了对计算机视觉的目标识别和自动驾驶的感知领域提供更好的基础支撑,本文设计了针对交通环境下的标注软件对采集的真实交通环境中的图像数据进行了
人脸属性分类任务是对给定的人脸图像提取特征,并进行特定属性的多标签分类。人脸属性是人类可理解的直观语义特征,比如眼睛、胡须、皱纹等,表情也是人脸属性的细分,比如微笑、愤怒等,由此看来人脸属性对于人脸特征的语义级别表述非常重要。现有的人脸属性识别方法包括两类,一类是针对每个属性单独训练二分类器,最后综合多个分类器完成多属性识别,这类方法可控性好,但是没有考虑到属性之间的关联;还有一类是多任务学习,特
同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是机器人自主导航定位的关键技术。以相机为传感器的视觉SLAM系统在近十余年中发展出包括非直接法、直接法和混合法在内的多种算法,这些算法在多种精确测定的数据集中可以完成基本的视觉定位和地图模型构建的任务。对于虚拟现实/增强现实等实际应用,现行算法不能很好地处理一些复杂运动的相机位姿估计,另外,一
微表情是一种发生非常迅速的表情,持续时间一般情况下只有1/25s~1/5s,发生时动作幅度微小,人很难凭借肉眼直接察觉,其同时是一种无法抑制且无法伪造的自发式表情,更适合作为人类真实心理想法的依据,在心理研究、公共安全、商务谈判等领域具有更强的适用性。目前微表情识别方法仍多依赖于手工提取特征,费时费力且能够提取到的特征有限,导致最终识别结果不理想。随着技术发展,已有研究人员将深度学习算法引入到微表
海洋无线传感器网络是由大量漂浮在海上的具有无线通信能力和一定数据处理能力的传感器节点组成的自组织的网络,由于其具有成本低、易布放、可大规模组网等特点,在海洋观测与探测方面具有广泛的应用。但是,受海上恶劣的天气环境与复杂的电磁环境影响,海洋无线传感器网络节点之间的传输非常不可靠。基于此,本文提出了一种宏分集接收的传输架构,并设计了一种低复杂度的级联分集合并方案,以提高系统传输可靠性。具体而言:首先,
基于LoRa(Long Range)的无线传感器网络具有功耗低、覆盖广的优势,可为广阔的区域提供高可靠、大规模的传感网络覆盖。然而部署环境的复杂多变以及节点间的碰撞造成了通信链路质量不可靠,导致无线传感器网络通信性能变差。针对上述问题,设计了基于LoRa的通信系统,从实地测试出发,研究了复杂场景下链路质量的分布特征,分析了LoRa物理层参数对不可靠链路性能的影响,从优化物理层参数配置和多址接入协议
无线传感器网络是一种集信息采集、处理和传输功能于一体的智能网络系统,具有灵活性高、成本低、自组织性高等特点,在军事、环境监测、智慧城市、农林渔牧以及健康医疗等领域均有较为广泛的应用前景。由于无线传感器网络节点资源受限,并经常部署在一些恶劣的环境中,数据传输会受到多径衰落、节点失效、链路中断、路径损耗、阴影效应等不利因素的影响,易造成数据包的丢失,所以数据传输往往得不到保障。本文主要针对无线传感器网
近年来,可贴合皮肤的柔性传感器在机器人技术、可穿戴电子与健康生理指标监控系统、人机交互接口等方面具有巨大应用潜力。柔性传感器能够更好的贴合像皮肤一样的复杂曲面,也可获得更加精确的测量结果。在几种常见传感器类型中,温度传感器阵列尤其值得重视,因为其在几个关键的潜在应用中起着重要作用,例如电子器件的热量监控,人体温度分布表征和物流、冷链过程的智能监控。关于柔性传感器的制备技术,印刷法是一种区别于传统高
世界上有许多人存在听力损失,佩戴助听器是目前除药物治疗外主要的治疗手段,佩戴助听器之前需要对助听器进行验配,助听器验配工作需要选择合适的助听器验配公式以达到好的听力补偿效果。而目前的助听器验配工作对于不同的听力损失患者需要选择不同的助听器验配公式以达到最优的验配效果,这给助听器的验配工作带来了极大的不便,因此本文提出了一种基于人工神经网络的助听器验配公式来解决这个问题。本文通过对验配助听器所需的关
最优控制问题是现代控制理论研究的热点之一,主要目标是选取一个容许的控制律,对被控对象的动态特征进行控制,实现性能指标的最优化。自适应动态规划能够通过函数近似结构逼近系统的代价函数和控制律,很好的规避了一般动态规划方法的“维数灾”问题,是目前有效解决复杂非线性系统最优控制问题的最有效方法之一。因此,将自适应动态规划和最优控制理论相结合具有重要意义,能够解决系统控制中存在的多种问题,从而大大提高控制性