论文部分内容阅读
蚁群算法是一种新型的仿生类算法,大量实验表明该算法具有较强的搜索最优解的能力,但同时与其它进化算法一样存在搜索速度慢,易于陷于局部最优的缺陷。为了克服蚁群算法在这方面的不足,该文通过引入奖励与惩罚机制,在蚂蚁搜索最优解的过程中,根据每次循环后的搜索结果,对蚁群算法中信息素更新的方法进行自适应调整,以达到从可行解中寻求尽可能好的解(满意解)的目的。通过与ACS算法的对比实验表明本算法在搜索速度和性能方面都有更好的效果。