论文部分内容阅读
针对高铁接触网顶紧螺栓目标小、缺陷检测困难的问题,提出一种基于深度学习的顶紧螺栓缺陷检测方法。根据4C检测车拍摄的高铁接触网图片(大小为6 600*4 400 pixels),首先对特征信息更多的斜撑套筒进行定位,采用TDM模块与SSD相结合的算法提升算法对小目标的检测精度,并通过改变默认框的尺寸以得到更好的检测精度和速度;然后利用DeepLabv3plus算法对顶紧螺栓部分进行语义分割;最后提出一种阈值法对顶紧螺栓的缺陷情况进行判别。为满足实际工程的速度需求,对训练好的模型进行优化。实验结果表明: