论文部分内容阅读
素质教育的核心是创新教育,在课堂教学中培养学生的创新意识,是知识经济时代赋予我们的责任,是社会需求给我们提出的要求。小学数学是基础教育的一门学科;它在培养学生创新素质方面有得天独厚的优势。那么如何让学生学会参与,学会发现,学会应用,学会创新呢?
一、营造氛围,激发创新
“好奇”是儿童的天性,好奇心是学生创新潜在的能力。是学生创新意识的萌发。
案例一:在进行“长方形面积”教学时,先安排了一个抢答,展开了一场别开生面的竞赛。如图:
如果每个小正方形的面积是1平方厘米,那么这些图形的面积分别是多少平方厘米?
回答前3个小题时,同学们争先恐后,课堂气氛非常活跃,到第四小题时,大部分同学闭口不语,只有少数同学说是6平方厘米,此时教室里很安静,与以往的课堂气氧。形成了鲜明的对比,教师抓住这个机会,迅速出击“你们想知道这个图形的面积吗?”同学们异口同声地说:“想”。然后让同学们仔细观察(1)(2)(3)有什么规律,学生经过思考后,总结出:长方形的面积=长×宽。在这一教学过程中,极大的鼓励了学生的创新热情。
二、重视质疑,培育创新
创新意识的培养要从问题开始,鼓励学生发现问题,大胆质疑。“疑”是打开知识大门的钥匙,只有常有疑点,常有问题,才能常有思考、常有创新。
案例二:让学生计算:底面直径28分米,高3分米的一只圆柱形水桶至少要用多少平方分米的铁皮?至少能装多少升水?(得数保留一位小数)
结果算出所需铁皮:32.5:304平方分米≈32.5平方分米。
容积为18.4632升≈18.5升
这时,有个学生提出疑问,如果根据题目要求保留一位小数。所需铁皮近似值32.5平方分米,差0.0304平方分米才能做成这只水桶;容积取近似值约装水18.5升。则水会溢出米。
学生以事实说话,很有道理。他不信老师,能独立思考,这正是创新意识的表现。学生学得主动,思考全面。教师要重视学生的质疑,热情鼓励学生,积极地与学生以其探索
热情地鼓励学生,积极地与学生一起探索,培养学生的创新能力。
三、组织讨论,发展创新
围绕一个问题,组织学生讨论、交流、争论。让他们各抒己见,互相启发补充,使问题得到完善的解决,互相交流,互相启发补充,使问题得到完善的解决,互相交流,学会倾听,可以激发兴趣,开拓思维,有利与促进创新意识的发展。
案例三:教学“十几减9”时,在课将要结束时,一学生问:“老师,12-9,2减9不够减,我是9-2=7,再用10-7=3,因此,12-9_=3,这样可以吗?”
开始时教室非常安静,片刻之后,这个问题就像一颗“炸弹”抛了出米。在场的老师议论纷纷,显然这种思考问题的方法不仅是授课老师没有想到的,就连听课老師也为之一振。授课老师采取了非常灵活的教学方法,及时组织同学对这个问题进行讨论,最后达成一致意见,老师不但没有批评这个同学,而且高度评价他敢于提出问题的精神,表扬他这种做法不但是合理的,而且有很强的独创性。
四、展开想象,促进创新
心理学家认为,想象是智力活动,具有活力的心理现象,没有想象,就没有创新,善于创新就必须善于想象。日本著名医学博士春山茂雄主张进行形象练习。数学老师要鼓励学生对数学问题进行人胆猜测,假设,推测,发展学生的直觉思维,激励学生创新。
案例四:教学“分数的认识”,老师出示一张长方形纸条,告诉学生这张纸条是一个图形的三分之一,原来图形是什么样子的呢?让学生展开想象,并以小组为单位,摆出原来图形的形状。最后总结:同一个图形可以是不同图形的三分之一,从而体会分数的抽象性,并且对后面学习“已知一个数的儿分之儿是多少,求这个数”类型题目有了一定的感性基础。
五、开放练习,学会创新
开放的课堂练习,有利丁培养学生的创新技能,提高创新能力,使学生学会创新。设计课堂练习时,要在加强基础知识基本技能练习的同时:精心设计一些一题多解,一题多变的习题和形式新、入口宽、解法活的开放题。
案例五:教学“商不变的性质”后设计如下练习。
(48×口)÷(8×口)=6;(口×7)÷(口×7)=6。
引导学生根据商不变的性质得出很多答案,使学生的发散性思维得到有效训练。同时,通过讨论又知道既要0除外又要符合一定的要求,这样有利于训练学生的集中思维。在实际教学过程中,可根据教学内容的特点和学生的实际,放手让学生自己来设计练习,这样可以使不同水平的学生都能发挥主体作用,提高创新技能,学会创新。
六、联系实际,运用创新
教学中教师还应联系实际解决问题,激发学习动机,学习动机激发的越强烈,越能发挥学生的智慧潜能,产生创新的火花留在教学中要引导学生运用已有的知识解决较为简单的实际问题,给学生以尝试,创新的空间,不断激励学生的创新意识。
案例六:在教学“长方体的体积”后,设计了这样一道题:把一个苹果摆在讲台上,要学生求出苹果的体积是多少?全体学生起初愣住了,而后纷纷议论起来,有的说如果将苹果捏成橡皮泥那样长方体就好了……在老师的启示下,学生终于悟出了可以将苹果这个不规则的体积转化为规则的体积,用一个长方体或正方体的容器盛一些水,将苹果放入,主要量出水面升起的高度,就可以算出苹果的体积,以此类推,不单苹果这个不规则的物体的体积可以计算,其他一切类似物体的体积都可以计算。
总之,学生创新能力的培养,途径是多方面的,随着社会的发展,教学的创新,新的教育观念的形成会出现更多的有效途径,只要我们在工作中大胆改革,勇于实践,就能实现教育的创新,培养出一代又一代的创新人才。
一、营造氛围,激发创新
“好奇”是儿童的天性,好奇心是学生创新潜在的能力。是学生创新意识的萌发。
案例一:在进行“长方形面积”教学时,先安排了一个抢答,展开了一场别开生面的竞赛。如图:
如果每个小正方形的面积是1平方厘米,那么这些图形的面积分别是多少平方厘米?
回答前3个小题时,同学们争先恐后,课堂气氛非常活跃,到第四小题时,大部分同学闭口不语,只有少数同学说是6平方厘米,此时教室里很安静,与以往的课堂气氧。形成了鲜明的对比,教师抓住这个机会,迅速出击“你们想知道这个图形的面积吗?”同学们异口同声地说:“想”。然后让同学们仔细观察(1)(2)(3)有什么规律,学生经过思考后,总结出:长方形的面积=长×宽。在这一教学过程中,极大的鼓励了学生的创新热情。
二、重视质疑,培育创新
创新意识的培养要从问题开始,鼓励学生发现问题,大胆质疑。“疑”是打开知识大门的钥匙,只有常有疑点,常有问题,才能常有思考、常有创新。
案例二:让学生计算:底面直径28分米,高3分米的一只圆柱形水桶至少要用多少平方分米的铁皮?至少能装多少升水?(得数保留一位小数)
结果算出所需铁皮:32.5:304平方分米≈32.5平方分米。
容积为18.4632升≈18.5升
这时,有个学生提出疑问,如果根据题目要求保留一位小数。所需铁皮近似值32.5平方分米,差0.0304平方分米才能做成这只水桶;容积取近似值约装水18.5升。则水会溢出米。
学生以事实说话,很有道理。他不信老师,能独立思考,这正是创新意识的表现。学生学得主动,思考全面。教师要重视学生的质疑,热情鼓励学生,积极地与学生以其探索
热情地鼓励学生,积极地与学生一起探索,培养学生的创新能力。
三、组织讨论,发展创新
围绕一个问题,组织学生讨论、交流、争论。让他们各抒己见,互相启发补充,使问题得到完善的解决,互相交流,互相启发补充,使问题得到完善的解决,互相交流,学会倾听,可以激发兴趣,开拓思维,有利与促进创新意识的发展。
案例三:教学“十几减9”时,在课将要结束时,一学生问:“老师,12-9,2减9不够减,我是9-2=7,再用10-7=3,因此,12-9_=3,这样可以吗?”
开始时教室非常安静,片刻之后,这个问题就像一颗“炸弹”抛了出米。在场的老师议论纷纷,显然这种思考问题的方法不仅是授课老师没有想到的,就连听课老師也为之一振。授课老师采取了非常灵活的教学方法,及时组织同学对这个问题进行讨论,最后达成一致意见,老师不但没有批评这个同学,而且高度评价他敢于提出问题的精神,表扬他这种做法不但是合理的,而且有很强的独创性。
四、展开想象,促进创新
心理学家认为,想象是智力活动,具有活力的心理现象,没有想象,就没有创新,善于创新就必须善于想象。日本著名医学博士春山茂雄主张进行形象练习。数学老师要鼓励学生对数学问题进行人胆猜测,假设,推测,发展学生的直觉思维,激励学生创新。
案例四:教学“分数的认识”,老师出示一张长方形纸条,告诉学生这张纸条是一个图形的三分之一,原来图形是什么样子的呢?让学生展开想象,并以小组为单位,摆出原来图形的形状。最后总结:同一个图形可以是不同图形的三分之一,从而体会分数的抽象性,并且对后面学习“已知一个数的儿分之儿是多少,求这个数”类型题目有了一定的感性基础。
五、开放练习,学会创新
开放的课堂练习,有利丁培养学生的创新技能,提高创新能力,使学生学会创新。设计课堂练习时,要在加强基础知识基本技能练习的同时:精心设计一些一题多解,一题多变的习题和形式新、入口宽、解法活的开放题。
案例五:教学“商不变的性质”后设计如下练习。
(48×口)÷(8×口)=6;(口×7)÷(口×7)=6。
引导学生根据商不变的性质得出很多答案,使学生的发散性思维得到有效训练。同时,通过讨论又知道既要0除外又要符合一定的要求,这样有利于训练学生的集中思维。在实际教学过程中,可根据教学内容的特点和学生的实际,放手让学生自己来设计练习,这样可以使不同水平的学生都能发挥主体作用,提高创新技能,学会创新。
六、联系实际,运用创新
教学中教师还应联系实际解决问题,激发学习动机,学习动机激发的越强烈,越能发挥学生的智慧潜能,产生创新的火花留在教学中要引导学生运用已有的知识解决较为简单的实际问题,给学生以尝试,创新的空间,不断激励学生的创新意识。
案例六:在教学“长方体的体积”后,设计了这样一道题:把一个苹果摆在讲台上,要学生求出苹果的体积是多少?全体学生起初愣住了,而后纷纷议论起来,有的说如果将苹果捏成橡皮泥那样长方体就好了……在老师的启示下,学生终于悟出了可以将苹果这个不规则的体积转化为规则的体积,用一个长方体或正方体的容器盛一些水,将苹果放入,主要量出水面升起的高度,就可以算出苹果的体积,以此类推,不单苹果这个不规则的物体的体积可以计算,其他一切类似物体的体积都可以计算。
总之,学生创新能力的培养,途径是多方面的,随着社会的发展,教学的创新,新的教育观念的形成会出现更多的有效途径,只要我们在工作中大胆改革,勇于实践,就能实现教育的创新,培养出一代又一代的创新人才。