论文部分内容阅读
针对基于卷积神经网络的立体匹配算法普遍存在参数量巨大、精度不足等问题,提出一种基于卷积神经网络的高效精准立体匹配算法.首先设计了一个融合多尺寸上下文信息的特征提取网络,提高不适定区域(Ill-posed regions)的匹配精度;其次,改进现有的相似度计算步骤,在保证匹配精度的同时,大量减少了网络的参数量;最后,提出一种轻量级的基于注意力机制的视差精修算法,从通道与空间维度上关注并修改初始视差图错误的像素点.与GC-Net在标准数据集Sceneflow上的对比实验表明,该算法在参数量减少14%的同