论文部分内容阅读
从漏洞信息当中抽取结构化信息对于安全研究而言有重要意义。安全研究者常需要在大规模的CVE数据中按特定要求进行筛选,或对漏洞进行自动化的分析测试。然而现有的CVE数据库中只包含了非结构化的文本描述和并不完备的辅助信息。从描述文本抽取结构化的信息能帮助研究者更好地组织与分析CVE。总结漏洞描述包含的七种核心要素,为结构化抽取建立模型,并将信息抽取转换为一个序列标注模型,构建数据集对其进行训练。实验表明,该模型能够以较高的准确率从CVE文本中抽取出各类关键信息。