基于机器学习的运营商客户行为分析

来源 :科学技术与工程 | 被引量 : 0次 | 上传用户:fxily
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了有效处理企业越来越多的业务数据,为企业业务提升和用户价值挖掘提供积极帮助,将机器学习方法应用于某运营商客户业务数据处理过程.首先对原始数据进行预处理,去除重复值、缺失值、异常值,并进行标准化处理,然后对不平衡数据采用合成少数类过采样(synthetic minority over-sampling technique,SMOTE)技术进行过采样,减少了预测的偏差.对处理后数据分别建立传统神经网络模型、优化神经网络模型和随机森林模型,并通过结构调优和参数调优等进行模型优化,对运营商客户进行预测与分析.结果表明,优化后的模型预测准确率可达96%,有良好的客户预测与分析效果,可见优化模型的有效性.最后为运营商挽留流失客户、维系非流失客户提供了解决方案,为运营商实施精准营销、节省运营商营销成本和创造更多利润提供了技术支持.
其他文献