论文部分内容阅读
针对多目标、多设计变量的优化问题,提出了两种优化的新算法:一种是将多目标问题转化为单目标时,对目标权重的确定提出了新的途径;另一种是直接对多目标问题进行优化,并对Pareto遗传优化技术作了改进,以得到均匀分布的Pareto最优解集.两种新算法都是建立在Nash的系统分解与Pareto遗传算法的基础上,因此称这类算法为Nash-Pareto策略.借助于这类算法,文中以跨声速压气机双圆弧类叶型的气动优化为例,给出了气动优化的全过程.数值优化的实验表明所给出的改进算法是可行的、有效的.