论文部分内容阅读
“培养学生初步的逻辑思维能力”是九年义务教育小学数学教学大纲规定的教学任务和教育目标。而指导学生学习和掌握常用的逻辑思维方法,是培养和提高学生的逻辑思维能力,使学生乐于思考并善于思考的关键。在小学数学教学中要启发学生掌握如下一些常用的逻辑思维方法。
一、分析与综合的方法
所谓分析的方法,就是把研究的对象分解成它的各个组成部分,然后分别研究每一个组成部分,从而获得对研究对象的本质认识的思维方法。综合的方法是把认识对象的各个部分联系起来加以研究,从整体上认识它的本质。例如学生认识5,教师要求学生把5个苹果放在两个盘子里,从而得到四种分法:1和4;2和3;3和2;4和1。由此学生认识到5可以分成1和4,也可以分成2和3等。这就是分析法。反过来,教师又引导学生在分析的基础上认识:1和4可以组成5,2和3也可以组成5。这就是综合法。在此基础上,教师还可以再一次运用分析、综合方法,指导学生认识5还可以分成5个1,从而知道5里面有5个1;反过来,5个1能组成5。分析、综合法广泛应用于整数的认识、分数、小数、四则混合运算、复合应用题、组合图形的计算等教学中。
二、比较与分类的方法
比较是用以确定研究对象和现象的共同点和不同点的方法。有比较才有鉴别,它是人们思维的基础。分类是整理加工科学事实的基本方法。比较与分类贯穿于整个小学数学教学的全过程之中。比如学生开始学习数学,他就会比较长短,比较大小,进而学会比较多少。然后就会把同样大小的放在一起,相同形状的归为一类。或者把相同属性的数学归并在一起(整数、小数、分数)。前者反映的是比较方法,后者例举的是分类方法。分类常常是通过比较得到的。比较和分类方法是小学数学教学中经常用到的最基本的思维方法。
三、抽象与概括的方法
抽象就是从许多客观事物中舍弃个别的、非本质的属性,抽出共同的、本质的属性的思维方法,概括就是把同类事物的共同本质属性综合起来成为一个整体。例如,10以内加法题一共有45道,学生初学时都是靠记住数的组成进行计算的。但是如果教师帮助学生逐步抽象概括出如下的规律,学生的计算就灵活多了:①一个数加上1,其结果就是这个数的后继数。②应用加法的交换性质。③一个数加上2,共13道题,可运用规律①推得。④5 5=10。掌握了这些规律,学生就可以减轻记忆负担,其认识水平也可以大大提高。又如,在计算得数是11的加法时,学生通过摆小棒计算出2 9、3 8、7 4、6 5等几道题之后,从中抽象出“凑十法”:看大数,拆小数,先凑十,再加几。这样,在学习后面的所有20以内进位加法时就可以直接运用“凑十法”进行计算了。事实表明,学生一旦掌握了抽象与概括的学习方法,机械记忆就将被意义理解所代替,认知能力和思维能力就会产生新的飞跃。
四、归纳与演绎的方法
这是经常运用的两种推理方法。归纳推理是由个别的或特殊的知识类推到一般的规律性知识。小学数学中的运算定律、性质及法则,很多是用归纳推理概括出来的。如加法的交换律是通过枚举整数中的几个“两个加数交换位置相加和不变”的例子推导概括出来的。这样的推理在小学一年级就可以经常开展训练。如让学生演算下面各题后发现一种规律:7-7=□,6-6=□,5-5=□……9-8=□,8-7=□……2-1=□。经常进行这样的训练,有利于培养学生有序、有理、有据的思维。
演绎推理是由一般推到特殊的思维方法。例如一年级学生“算加法想减法”,实际上是以加减互逆关系作为大前提,从而推算出减法式题的计算结果。又如,由“0不能做除数”为大前提,根据分数、比与除法的关系,推理出分母和比的后项不能为0。事实上,人们认识事物一般都经历两个过程:一个是由特殊到一般,一个是由一般到特殊。因此,归纳与演绎法是人们认识事物的重要方法。
值得一提的是,由于归纳推理的判断是一些个别的、特殊的判断,因而它的结论与前提之间的联系并不具有逻辑的必然性。例如,虽然有0÷2=0,0÷3=0,0÷100=0,……但并不能因此推出“0除以任何数都等于0”。所以,人们在得到一般规律性知识以后,还要用某个规律性知识推到某个个别的特殊的知识。一般说来,如果一般规律性知识是真的,那么,所推得的个别或特殊的知识也是真的。
综上所述,我们看到运用分析、综合、比较、分类的方法研究事物,有助于人们认识事物的本质和事物发展的规律。然而,人们要把握事物的本质和规律,必须要经历一个抽象概括的过程,而抽象概括的过程既要运用分析、综合、比较、归纳,也要运用概念、判断和推理进行。
总之,在实际的学习和工作中,这些方法通常是在结合使用、交替使用和综合运用中发挥作用。因此,上述逻辑思维的方法是小学生学习数学经常用到的一般方法,也是在小学数学教学中必须让学生学习和掌握的基本方法。我们要根据各年级的教学内容,认真研究哪些逻辑思维方法对学习某个内容所起的作用,这样才能在教学中有意识地培养学生初步的逻辑思维能力。
一、分析与综合的方法
所谓分析的方法,就是把研究的对象分解成它的各个组成部分,然后分别研究每一个组成部分,从而获得对研究对象的本质认识的思维方法。综合的方法是把认识对象的各个部分联系起来加以研究,从整体上认识它的本质。例如学生认识5,教师要求学生把5个苹果放在两个盘子里,从而得到四种分法:1和4;2和3;3和2;4和1。由此学生认识到5可以分成1和4,也可以分成2和3等。这就是分析法。反过来,教师又引导学生在分析的基础上认识:1和4可以组成5,2和3也可以组成5。这就是综合法。在此基础上,教师还可以再一次运用分析、综合方法,指导学生认识5还可以分成5个1,从而知道5里面有5个1;反过来,5个1能组成5。分析、综合法广泛应用于整数的认识、分数、小数、四则混合运算、复合应用题、组合图形的计算等教学中。
二、比较与分类的方法
比较是用以确定研究对象和现象的共同点和不同点的方法。有比较才有鉴别,它是人们思维的基础。分类是整理加工科学事实的基本方法。比较与分类贯穿于整个小学数学教学的全过程之中。比如学生开始学习数学,他就会比较长短,比较大小,进而学会比较多少。然后就会把同样大小的放在一起,相同形状的归为一类。或者把相同属性的数学归并在一起(整数、小数、分数)。前者反映的是比较方法,后者例举的是分类方法。分类常常是通过比较得到的。比较和分类方法是小学数学教学中经常用到的最基本的思维方法。
三、抽象与概括的方法
抽象就是从许多客观事物中舍弃个别的、非本质的属性,抽出共同的、本质的属性的思维方法,概括就是把同类事物的共同本质属性综合起来成为一个整体。例如,10以内加法题一共有45道,学生初学时都是靠记住数的组成进行计算的。但是如果教师帮助学生逐步抽象概括出如下的规律,学生的计算就灵活多了:①一个数加上1,其结果就是这个数的后继数。②应用加法的交换性质。③一个数加上2,共13道题,可运用规律①推得。④5 5=10。掌握了这些规律,学生就可以减轻记忆负担,其认识水平也可以大大提高。又如,在计算得数是11的加法时,学生通过摆小棒计算出2 9、3 8、7 4、6 5等几道题之后,从中抽象出“凑十法”:看大数,拆小数,先凑十,再加几。这样,在学习后面的所有20以内进位加法时就可以直接运用“凑十法”进行计算了。事实表明,学生一旦掌握了抽象与概括的学习方法,机械记忆就将被意义理解所代替,认知能力和思维能力就会产生新的飞跃。
四、归纳与演绎的方法
这是经常运用的两种推理方法。归纳推理是由个别的或特殊的知识类推到一般的规律性知识。小学数学中的运算定律、性质及法则,很多是用归纳推理概括出来的。如加法的交换律是通过枚举整数中的几个“两个加数交换位置相加和不变”的例子推导概括出来的。这样的推理在小学一年级就可以经常开展训练。如让学生演算下面各题后发现一种规律:7-7=□,6-6=□,5-5=□……9-8=□,8-7=□……2-1=□。经常进行这样的训练,有利于培养学生有序、有理、有据的思维。
演绎推理是由一般推到特殊的思维方法。例如一年级学生“算加法想减法”,实际上是以加减互逆关系作为大前提,从而推算出减法式题的计算结果。又如,由“0不能做除数”为大前提,根据分数、比与除法的关系,推理出分母和比的后项不能为0。事实上,人们认识事物一般都经历两个过程:一个是由特殊到一般,一个是由一般到特殊。因此,归纳与演绎法是人们认识事物的重要方法。
值得一提的是,由于归纳推理的判断是一些个别的、特殊的判断,因而它的结论与前提之间的联系并不具有逻辑的必然性。例如,虽然有0÷2=0,0÷3=0,0÷100=0,……但并不能因此推出“0除以任何数都等于0”。所以,人们在得到一般规律性知识以后,还要用某个规律性知识推到某个个别的特殊的知识。一般说来,如果一般规律性知识是真的,那么,所推得的个别或特殊的知识也是真的。
综上所述,我们看到运用分析、综合、比较、分类的方法研究事物,有助于人们认识事物的本质和事物发展的规律。然而,人们要把握事物的本质和规律,必须要经历一个抽象概括的过程,而抽象概括的过程既要运用分析、综合、比较、归纳,也要运用概念、判断和推理进行。
总之,在实际的学习和工作中,这些方法通常是在结合使用、交替使用和综合运用中发挥作用。因此,上述逻辑思维的方法是小学生学习数学经常用到的一般方法,也是在小学数学教学中必须让学生学习和掌握的基本方法。我们要根据各年级的教学内容,认真研究哪些逻辑思维方法对学习某个内容所起的作用,这样才能在教学中有意识地培养学生初步的逻辑思维能力。