论文部分内容阅读
为了探讨利用生物质秸秆工业分析指标预测生物质秸秆热值的可行性,建立高、低位热值的预测模型,采集了油菜、小麦、玉米和水稻4种不同作物秸秆总计172个样品,这4种作物秸秆的数量分别为31、36、86和19,按照美国材料与试验协会(ASTM)的标准方法分别测定样本的水分、挥发分、灰分和固定碳等工业分析指标,采用IKAC2000型量热仪测定热值。通过数据统计分析,挥发分和固定碳对热值有极显著的正相关性,而灰分对热值有极显著的负相关,并且水分、挥发分、灰分和固定碳等4项指标之间存在严重的共线性。利用主成分回归方法建立高、低位热值预测模型效果最优,高位热值预测模型的决定系数R2为0.91,预测值标准差SEP为0.20kJ/g,相对标准差RSD为1.25%;低位热值预测模型的决定系数R2为0.91,预测值标准差SEP为0.20kJ/g,相对标准差RSD为1.33%。并用20个样品对预测模型进行了外部验证,高位热值和低位热值预测值标准差SEP分别为0.18kJ/g和0.19kJ/g,相对标准差RSD分别为1.09%和1.29%,取得较理想的预测结果。试验结果表明,主成分回归方法建立的基于工业分析指标的生物质秸秆热值预测模型可以较准确地预测生物质秸秆热值,利用生物质秸秆工业分析指标预测生物质秸秆热值是可行的,该研究可为生物质秸秆能源化利用提供参考。