论文部分内容阅读
三维点云数据通常具备无序排列的结构。在三维点云数据处理领域,深度学习模型通常会利用最大池化等对称操作来处理点云的排列不变性。最大池化方法一方面会破坏点云的信息结构,使得局部信息与全局信息难以交互。另一方面,最大池化方法对点云信息过度压缩,得到的特征对局部细节描述不足。针对上述问题,提出了AttentionPointNet的网络结构。该网络利用注意力机制,使每个点与点云其余部分进行特征交互,实现了局部与全局信息的综合。为降低最大池化造成的信息损失,提出了一种稀疏卷积方法来替代池化操作。这种方法利用大步