论文部分内容阅读
有监督的分类方法是文本分类中常用的方法,它需要采用人工标识的样本进行训练,对样本的人工标识是一个比较繁锁的过程。无监督的分类方法没有这一过程,但其分类的效果往往不太好。针对两者各自的优缺点,利用一种基于SVM和K—means相结合的文本分类方法,首先用K-means方法进行文本聚类,然后选取每类中距离聚类中心较近的一些文本作为该类的训练样本训练SVM分类器,最后用训练好的SVM对文本进行分类。此方法避免了无监督方法分类效果不好的缺点,同时也省去了SVM方法中对样本进行人工标识的繁锁过程。基于灾害文本的实验