论文部分内容阅读
机构名翻译是机器翻译的研究内容之一,在机器翻译任务中机构名翻译的准确度,直接影响着翻译性能。在很多任务上,神经机器翻译性能优于传统的统计机器翻译性能,该文中使用基于transformer神经网络模型与传统的基于短语的统计机器翻译模型和改进后的基于语块的机器翻译模型做了对比试验。实验结果表明,在汉蒙机构名翻译任务上,基于transformer神经网络的汉蒙机构名翻译系统优于传统的基于语块的汉蒙机构名翻译系统,BLEU4值提高了0.039。