论文部分内容阅读
摘要:评价是培训质量保障体系的重要组成部分,是培训管理的有效手段。文中通过设计评价指标体系,确定网络层数和节点数,选取传递函数和误差,学习训练等环节,建立了基于BP神经网络的边疆高校培训评价模型。该模型有效规避了评价过程中的主观因素,简化了传统教师培训评价复杂的操作过程,可操作性强,使用范围广泛,也可为其他领域的评价提供参考。
关键词:BP神经网络;指标体系;边疆高校;培训评价
G434;TP183
引言
随着我国高校布局结构不断调整,边疆高校依托对外教育合作交流特色纷纷组建获批,并在新建高校中占有一定的份额,成为高等教育的重要组成部分。这些高校均已建立起来富有边疆特色的培训体系。以黑河学院为例,明确了“一体两翼”的培训基本方针,并构建了“四位一体”的培训体系。[1]体系运行三年来,共组织培训1427人次,其中对俄特色培训563人次,随着培训工作的深入开展,培训监督与保障体系的不断完善,如何对培训效果进行科学评价成为亟需解决的重要课题。
国内外有关培训评价模型的研究始20世纪50年代,并已形成丰硕的成果。诸如Kirkpatrick的四层次评价模型;Kaufman的五层次评价模型;Warr.P、Bird.M和Rackham.N设计的CIRO评价模型;Stufflebeam.D的CIPP评价模型;Phillips的ROI五层次评价模型;基于AHP的评价模型;模糊综合评价模型等。[2]由于培训效果影响因素众多,而评价模型本身是一个多变量非线性模糊问题,这些评价评价方法在某种程度上取得了一定的成效,但均受主观因素影响严重,无法满足管理部门准确把握培训效果的要求。因此,建立一套科学、实用、适合自身实际的培训指标体系和评价模型成为摆在师资管理部门面前的迫切解决的问题。
一、BP神经网络的概述
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络模型,由Rinehart和McClelland为首的研究小组于1986年提出。该模型无需事前揭示描述输入-输出映射关系的函数表达式,凭借学习训练和存贮数据蕴含的大量映射关系,运用最速下降法,在误差平方和最小的情况下,通过反向传播获取神经网络的权值和阈值。完成训练的BP神经网络能够对类似的样本输入信息,自行输出误差最小的经非线形转换的信息。BP神经网络模型的拓扑结构由輸入层(input)、隐层(hide layer)和输出层(output layer)构成。输入层与输出层只有一层,隐层可以多层。该模型能够实现系统评价定量化,剔除了主观性强的模糊描述,操作上也可利用MATLAB软件实现。
二、构建边疆高校培训指标体系
培训指标体系是建立评价模型的前提条件。培训的不同阶段具有不同的评价内容和评价目的,主要体现在培训前决策性评价、培训中形成性评价和培训后效果性评价。本研究采用SEM模型确定评价指标,指标体系由组织层面和受训层面两部分构成,组织层面包括培训管理、培训条件、培训内容等,受训层面包括受训者态度、意识、认知、能力和应用等,并运用AHP算法确定权重。评价指标体系如表1所示。
三、BP神经网络评价模型的建立
确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等内容也就确定了BP神经网络。虽然确定上述内容可遵循一定的原则,但更多的是靠经验和试凑。下面给出BP神经网络模型的具体步骤:
(一)确定BP网络的结构
1.输入层节点的确定。根据边疆高校培训指标体系构造三层BP 神经网络,以第三级评价指标為参照标准,共有37个神经网络的输入层节点。
2.输出层节点的确定。建立评价模型的最终目的是能够得到一个准确反映培训效果的量化值,即BP 神经网络模型的输出值。设定输出层的节点数为1个,其取值介于0、1之间。
3.隐含层节点的确定。关于隐层数及其节点数的选择比较复杂,基本原则是:在能正确反映输入输出关系的基础上,选用较少的隐层节点数,使网络结构尽量简单。现采用试凑法,利用公式 确定隐含层节点的个数[3],其中 为隐含层节点数, 为输入层节点数, 为输出层节点数, 为常数。最终确定隐含层最佳节点数为9个。
(二)确定传递函数
神经元选用sigmoid型传递函数。样本集的BP网络训练显示,tansig型传递函数比logsig型函数的误差小,因此,隐层传递函数改用tansig型函数。输出层传递函数选用purelin函数。
(三)权值和阈值初始设置。
合理设置 BP 神经网络连接权值和阈值的初始范围,将有效缩短网络的学习时间。权值和阈值的范围通常设置为[-1,1]或 ( 为网络输入层节点数)。[4]经过测试,现将权值和阈值的初始范围设为[-1,1]。
(四)误差的选取
对于标准算法误差,每次修改权矩阵均未考虑修改后样本作用的输出误差是否减小的因素,这可能导致迭代次数增加。对于累计误差,增加样本数量又会导致误差值增大。均方误差MSE能够较好地克服上述两个缺陷,为此,均方误差算法较为合理。
其中, 为输出节点数, 为样本容量, 为网络期望输出值, 为网络实际输出值。
(五)学习算法的选择
文中选用LMBP 优化算法。该算法是传统学习算法的改进,具有可自适应调整最速下降法和高斯—牛顿法、误差可沿恶化方向搜索、收敛速度快、精确度高等优点。
(六)进行网络训练
取69个样本进行训练。由于对输入变量进行归一化处理,权值的可解释性会弱化。为此,文中输入变量不进行归一化,只对输出变量归一化。[5]同时考虑培训效果不能出现好与坏极端情况,并且还能为网络输出值预留波动范围,所以,归一化公式选取为 目标输出值落在区间[0.05,0.95]内,可表征评价结果,若0.9≤y<0.95,则评价结果为优秀;若0.8≤y<0.9,则评价结果为良好;若 0.7≤y<0.8,則评价结果为合格;若 0.6≤y<0.7,则评价结果为基本合格;若0.05≤y<0.6,则评价结果为不合格。
(八)神经网络模型测试
取30个测试样本,经最终训练后的神经网络模型输出的结果与被调查教师自我评价结果的比对,误差较小,保持较好的一致性。具体如表2所示。
通过試验对比,充分说明该BP神经网络模型训练速度快,误差小,精度高,可以对边疆高校教师培训效果做出客观的评价。
结束语
基于BP神经网络的评价模型能够对边疆高校培训情况进行客观、准确的评价。通过设计评价指标体系,确定网络结构层数和节点数,选取高效的传递函数和误差,规避了评价过程中的主观因素,简化了传统教师培训评价复杂的操作过程。同时,该模型具有可操作性强,使用范围广泛等优点,也可为其他领域的评价提供参考。
参考文献:
[1]贯昌福,刘君. 关于边疆高校培训体系的建设与思考[J].黑河学院学报,2013(4):52-54.
[2]郭遂红,陈元骊.大学英语教师网络培训评价研究[J].外语电化教学,2014(158):69-74.
[3]Yam J Y F,Chow T W S.Feed forward networks training speed enhancement by optimal initialization of the synaptic co-efficients[J].IEEE Transactions on Neural Networks,2001,34(5):73-85.
[4] Jemei S,Hissel D,Pear M C,et al.On-board fuel cell power supply modeling on the basis of neural network methodology[J].Journal of Power Sources,2003,124( 2):479-486.
[5]Lee Hzhn-Ming,Chen Chih-Ming.Learning efficiency improvement of back-propagation algorithm by error saturationprevention method[J].Neurocomputing,2001,41(1 -4): 125-143.
作者简介:刘君(Liu Jun),男,1979年出生,黑龙江省黑河学院教师,讲师,硕士,研究方向为运筹学与控制论。吴晓莉(Wu Xiaoli),女,1965年出生, 黑龙江省黑河学院人事处处长,教授,硕士,研究方向为教育管理。
基金项目:黑龙江省高等教育综合改革试点专项项目“构建边疆高校特色培训体系,促进师资队伍建设与发展”,项目编号:JGZ201201186;黑龙江省高等教育教学改革项目“借助中俄合作交流打造高素质师资队伍”,项目编号:GJZ201301046.
关键词:BP神经网络;指标体系;边疆高校;培训评价
G434;TP183
引言
随着我国高校布局结构不断调整,边疆高校依托对外教育合作交流特色纷纷组建获批,并在新建高校中占有一定的份额,成为高等教育的重要组成部分。这些高校均已建立起来富有边疆特色的培训体系。以黑河学院为例,明确了“一体两翼”的培训基本方针,并构建了“四位一体”的培训体系。[1]体系运行三年来,共组织培训1427人次,其中对俄特色培训563人次,随着培训工作的深入开展,培训监督与保障体系的不断完善,如何对培训效果进行科学评价成为亟需解决的重要课题。
国内外有关培训评价模型的研究始20世纪50年代,并已形成丰硕的成果。诸如Kirkpatrick的四层次评价模型;Kaufman的五层次评价模型;Warr.P、Bird.M和Rackham.N设计的CIRO评价模型;Stufflebeam.D的CIPP评价模型;Phillips的ROI五层次评价模型;基于AHP的评价模型;模糊综合评价模型等。[2]由于培训效果影响因素众多,而评价模型本身是一个多变量非线性模糊问题,这些评价评价方法在某种程度上取得了一定的成效,但均受主观因素影响严重,无法满足管理部门准确把握培训效果的要求。因此,建立一套科学、实用、适合自身实际的培训指标体系和评价模型成为摆在师资管理部门面前的迫切解决的问题。
一、BP神经网络的概述
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络模型,由Rinehart和McClelland为首的研究小组于1986年提出。该模型无需事前揭示描述输入-输出映射关系的函数表达式,凭借学习训练和存贮数据蕴含的大量映射关系,运用最速下降法,在误差平方和最小的情况下,通过反向传播获取神经网络的权值和阈值。完成训练的BP神经网络能够对类似的样本输入信息,自行输出误差最小的经非线形转换的信息。BP神经网络模型的拓扑结构由輸入层(input)、隐层(hide layer)和输出层(output layer)构成。输入层与输出层只有一层,隐层可以多层。该模型能够实现系统评价定量化,剔除了主观性强的模糊描述,操作上也可利用MATLAB软件实现。
二、构建边疆高校培训指标体系
培训指标体系是建立评价模型的前提条件。培训的不同阶段具有不同的评价内容和评价目的,主要体现在培训前决策性评价、培训中形成性评价和培训后效果性评价。本研究采用SEM模型确定评价指标,指标体系由组织层面和受训层面两部分构成,组织层面包括培训管理、培训条件、培训内容等,受训层面包括受训者态度、意识、认知、能力和应用等,并运用AHP算法确定权重。评价指标体系如表1所示。
三、BP神经网络评价模型的建立
确定了网络层数、每层节点数、传递函数、初始权系数、学习算法等内容也就确定了BP神经网络。虽然确定上述内容可遵循一定的原则,但更多的是靠经验和试凑。下面给出BP神经网络模型的具体步骤:
(一)确定BP网络的结构
1.输入层节点的确定。根据边疆高校培训指标体系构造三层BP 神经网络,以第三级评价指标為参照标准,共有37个神经网络的输入层节点。
2.输出层节点的确定。建立评价模型的最终目的是能够得到一个准确反映培训效果的量化值,即BP 神经网络模型的输出值。设定输出层的节点数为1个,其取值介于0、1之间。
3.隐含层节点的确定。关于隐层数及其节点数的选择比较复杂,基本原则是:在能正确反映输入输出关系的基础上,选用较少的隐层节点数,使网络结构尽量简单。现采用试凑法,利用公式 确定隐含层节点的个数[3],其中 为隐含层节点数, 为输入层节点数, 为输出层节点数, 为常数。最终确定隐含层最佳节点数为9个。
(二)确定传递函数
神经元选用sigmoid型传递函数。样本集的BP网络训练显示,tansig型传递函数比logsig型函数的误差小,因此,隐层传递函数改用tansig型函数。输出层传递函数选用purelin函数。
(三)权值和阈值初始设置。
合理设置 BP 神经网络连接权值和阈值的初始范围,将有效缩短网络的学习时间。权值和阈值的范围通常设置为[-1,1]或 ( 为网络输入层节点数)。[4]经过测试,现将权值和阈值的初始范围设为[-1,1]。
(四)误差的选取
对于标准算法误差,每次修改权矩阵均未考虑修改后样本作用的输出误差是否减小的因素,这可能导致迭代次数增加。对于累计误差,增加样本数量又会导致误差值增大。均方误差MSE能够较好地克服上述两个缺陷,为此,均方误差算法较为合理。
其中, 为输出节点数, 为样本容量, 为网络期望输出值, 为网络实际输出值。
(五)学习算法的选择
文中选用LMBP 优化算法。该算法是传统学习算法的改进,具有可自适应调整最速下降法和高斯—牛顿法、误差可沿恶化方向搜索、收敛速度快、精确度高等优点。
(六)进行网络训练
取69个样本进行训练。由于对输入变量进行归一化处理,权值的可解释性会弱化。为此,文中输入变量不进行归一化,只对输出变量归一化。[5]同时考虑培训效果不能出现好与坏极端情况,并且还能为网络输出值预留波动范围,所以,归一化公式选取为 目标输出值落在区间[0.05,0.95]内,可表征评价结果,若0.9≤y<0.95,则评价结果为优秀;若0.8≤y<0.9,则评价结果为良好;若 0.7≤y<0.8,則评价结果为合格;若 0.6≤y<0.7,则评价结果为基本合格;若0.05≤y<0.6,则评价结果为不合格。
(八)神经网络模型测试
取30个测试样本,经最终训练后的神经网络模型输出的结果与被调查教师自我评价结果的比对,误差较小,保持较好的一致性。具体如表2所示。
通过試验对比,充分说明该BP神经网络模型训练速度快,误差小,精度高,可以对边疆高校教师培训效果做出客观的评价。
结束语
基于BP神经网络的评价模型能够对边疆高校培训情况进行客观、准确的评价。通过设计评价指标体系,确定网络结构层数和节点数,选取高效的传递函数和误差,规避了评价过程中的主观因素,简化了传统教师培训评价复杂的操作过程。同时,该模型具有可操作性强,使用范围广泛等优点,也可为其他领域的评价提供参考。
参考文献:
[1]贯昌福,刘君. 关于边疆高校培训体系的建设与思考[J].黑河学院学报,2013(4):52-54.
[2]郭遂红,陈元骊.大学英语教师网络培训评价研究[J].外语电化教学,2014(158):69-74.
[3]Yam J Y F,Chow T W S.Feed forward networks training speed enhancement by optimal initialization of the synaptic co-efficients[J].IEEE Transactions on Neural Networks,2001,34(5):73-85.
[4] Jemei S,Hissel D,Pear M C,et al.On-board fuel cell power supply modeling on the basis of neural network methodology[J].Journal of Power Sources,2003,124( 2):479-486.
[5]Lee Hzhn-Ming,Chen Chih-Ming.Learning efficiency improvement of back-propagation algorithm by error saturationprevention method[J].Neurocomputing,2001,41(1 -4): 125-143.
作者简介:刘君(Liu Jun),男,1979年出生,黑龙江省黑河学院教师,讲师,硕士,研究方向为运筹学与控制论。吴晓莉(Wu Xiaoli),女,1965年出生, 黑龙江省黑河学院人事处处长,教授,硕士,研究方向为教育管理。
基金项目:黑龙江省高等教育综合改革试点专项项目“构建边疆高校特色培训体系,促进师资队伍建设与发展”,项目编号:JGZ201201186;黑龙江省高等教育教学改革项目“借助中俄合作交流打造高素质师资队伍”,项目编号:GJZ201301046.