论文部分内容阅读
在分析D-S证据理论和神经网络理论各自特点的的基础之上,提出将这两种方法进行融合,并对电控汽车车载自诊断系统的诊断数据流参数进行处理和分析。该融合方法是将各个独立的低维神经网络的输出值处理后作为辨识框架上命题的基本可信度,经过证据理论的再次融合后得到最终的诊断结果。通过电控发动机典型故障的实例分析表明,该方法能够克服单一神经网络诊断中数据源包含信息的不全面性以及模糊性等局限性,并使得证据理论的基本可信度分配不再完全依赖专家的主观化赋值,同时可以充分利用各种故障的冗余和互补信息,从而使得汽车电控系统的故障的