论文部分内容阅读
为了进一步平衡OLED器件内部空穴和电子载流子的注入,制备了结构为ITO/NPB(40nm)/Alq3(45nm)/Bphen:(X%)BCP:(5%)Cs_2CO_3(15nm)/Cs_2CO_3(1.5nm)/Al(100nm)的OLED器件,通过改变BCP的掺杂浓度,研究了以Bphen:BCP:Cs_2CO_3作为电子传输层对OLED器件发光亮度、电流密度和效率等性能的影响。结果表明,采用Bphen:BCP:Cs_2CO_3作为电子传输层能提高器件的电子注入能力,改善器件的性能,相比于未引入BCP的器件,采用BCP掺杂浓度为10%的Bphen:BCP:Cs_2CO_3作为电子传输层,可以使器件的最大电流效率提高46%,达到3.89cd/A,且在电压从为5V上升至10V的过程中,器件的色坐标一直为(0.35,0.55),具有很高的稳定性。原因是由于BCP的高LUMO能级和高HOMO能级,能够有效阻挡空穴到达阴极,减小空穴漏电流,同时使电子的注入更容易,电子和空穴的注入更加平衡,发光也更加稳定。
In order to further balance the injection of holes and electron carriers inside the OLED device, a structure having a structure of ITO / NPB (40nm) / Alq3 (45nm) / Bphen: (X%) BCP: (5%) Cs2CO3 (15nm) / Cs2CO3 The effect of Bphen: BCP: Cs_2CO_3 as electron transporting layer on the luminescence intensity, current density and efficiency of OLED devices was studied by changing the doping concentration of BCP with 1.5nm / Al (100nm) OLEDs. The results show that using Bphen: BCP: Cs_2CO_3 as the electron transport layer can improve the electron injection capability of the device and improve the performance of the device. BCP: BCP: Cs_2CO_3 with BCP doping concentration of 10% The electron transport layer can improve the maximum current efficiency of the device by 46% to 3.89cd / A, and the color coordinate of the device has always been (0.35,0.55) when the voltage rises from 5V to 10V, and has a high stability. The reason is that due to the high LUMO energy level and high HOMO energy level of BCP, the hole can effectively block the hole from reaching the cathode, reduce the hole leakage current, make the injection of electrons easier, make the injection of electrons and holes more balanced, and emit more light stable.