扮演职业角色 培养学生素养

来源 :数学学习与研究 | 被引量 : 0次 | 上传用户:heinblue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  各位评委、老师,大家好!
  我说课的题目是“圆的标准方程”. 新教学大纲指出:中职数学的学习内容应当突出职业特色,贴近学生实际,贴近生活……数学学习活动应当是一个生动活泼的、主动的和富有个性的过程. 我非常赞赏美国数学家乔治·波利亚的学习和教学的三原则“主动学习、最佳动机、循序渐进”. 根据以上教育理念,我从教材分析、教法学法、教学流程、教学反思四方面阐述本节课的构思与设想.
  一、教材分析
  1. 地位与作用
  “圆的标准方程”是基础模块下册第8章第4节第1课时的内容. 它属于解析几何的基础知识,是研究二次曲线的开始,对研究圆的一般方程、直线与圆的位置关系、学习椭圆、双曲线、抛物线,无论在知识还是方法方面都有积极的作用. 因此本节内容在解析几何中起着承前启后的重要作用.
  2. 教学目标
  根据新大纲,我确定如下三维教学目标:
  (1)知识目标
  ① 根据圆的标准方程写出圆的半径和圆心坐标.
  ② 根据已知条件写出圆的标准方程.
  C层学生掌握“直接给出圆心坐标和半径,求圆的标准方程”.
  B层学生掌握“间接给出圆心或间接给出半径,求圆的标准方程”.
  A层学生掌握“圆心和半径都是间接给出,求圆的标准方程”.
  (2)能力目标
  ① 进一步培养学生用代数方法研究几何问题的能力.
  ② 培养学生数形结合能力.
  ③ 提高学生观察、归纳总结的能力.
  (3)情感目标
  ① 培养学生主动探究知识、合作交流的意识.
  ② 从图形美和方程美中体验数学的美感,激发学生的学习兴趣;从教师对“圆满”生活的理解,启发学生对人生的感悟.
  3. 重点与难点
  我确定的教学重点是:根据圆的标准方程写出圆的半径和圆心坐标;根据已知条件写出圆的标准方程.
  掌握圆的标准方程的推导过程,一方面有利于加深理解、灵活运用圆的标准方程,另一方面可以迁移到求圆锥曲线方程. 但我班的学生思维能力薄弱,同时对解析法的运用不熟练,因此在推导圆的标准方程的过程中会遇到困难. 因此我确定教学难点为“推导并理解圆的标准方程”.
  二、教法学法
  1. 学情分析
  我所担教的是2010级工艺美术(2)班的教学工作. 学生大多十七八岁,他们动手能力强,学习习惯较好,具有较强的合作交流能力和自我展示的愿望,对涉及美术专业的教学内容有浓厚兴趣;但意志薄弱,归纳总结能力不强.
  结合学情和教学目标,下面从教法和学法两方面进行分析.
  2. 教法分析
  在教法方面,采用问题教学法、分层教学法、多媒体辅助教学法、学案教学法,四法合一,相辅相乘,贯穿始终.
  首先介绍问题教学法:本节课提出五个环环相扣的问题,引导学生独立思考,积极主动地探索问题的答案.
  在从特殊到一般的圆的标准方程的推导的基础上,利用“几何画板”进行“验证”,这样设计符合学生的认知规律,学生容易理解和记忆圆的标准方程,从而分解并突破了教学难点.
  3. 学法分析
  在学法方面,采取小组合作学习法和类比学习法. 课前,我做了大量准备工作.
  为了更好地开展小组合作学习,我班教室做了调整:1. 教室配备了前黑板、后黑板和一块可移动黑板. 2. 以小组为单位对桌而坐.
  类比学习法,体现在由“直线的点斜式方程”的推导,类比得到“圆的标准方程”.
  为了保证教学效果,我准备了如下教具. 重点介绍扑克牌的使用:为了使教学过程生动活泼、学生主动学习,我设计了“抽牌游戏”. 当学生在回答问题、做习题正确、课堂上的综合表现突出或取得进步等情况下,奖励一到三次的抽牌机会. 这是一种玩中学的教学策略,有利于调动学生主动参与课堂教学.
  三、教学流程
  1. 课前热身【1分钟】
  作为一名具有“青少年心理健康辅导员资格”和“心理健康A证”的教师,课前我设计了两个活动. 目的是为了营造轻松、活跃的课堂气氛,更好地组织教学,同时培养学生良好的心理品质和积极向上的性格特点,体现了教师的人文关怀.
  2. 情景引入【3分钟】
  通过信息化技术,我创设与美术专业相关的情景,提出第一个问题. 这是两个复习式小问题,目的是通过学生动手画圆,让学生思考确定圆的要素.
  3. 探索新知【15分钟】
  【问题二】 如何求圆的标准方程?
  用解析法研究圆的方程.
  ① 直线可以用方程来表示,那么圆也应当可以用方程来描述. 于是提出问题二. 鼓励学生推导刚刚画的圆的方程. 当学生不知从何下手时,根据最近发展区理论,我引导学生回顾“直线的点斜式方程”的推导过程. 在学生独立思考、小组讨论的基础上,借助学案以填空题形式的推导过程的帮助下,得出如下的推导思路,推导出所求的圆的方程.
  ② 继续鼓励学生推导以点C(a,b)为圆心,r(r > 0)为半径的圆的标准方程. 强调两种特殊位置的圆的标准方程.
  ③ 接下来进入“验证”环节.
  这时,我分解并突破了教学难点.
  4. 知识巩固【16分钟】
  【问题三】 如何运用圆的标准方程?
  知识的价值在于它的运用. 提出问题三. 我设计了两种类型,类型一是已知圆的标准方程求圆心和半径,类型二是已知圆心和半径,求圆的标准方程.
  本节课在每道例题后及时配备阶梯式练习,有两个目的:一是让学生体验成功的喜悦,找到自信,增强学习数学的愿望和信心;二是体现本节课的教学重点——圆的标准方程的运用.   5. 小组竞赛【6分钟】
  考虑到中职学生意志力普遍薄弱,难于长时间集中精力,我设计了小组竞赛环节. 此环节安排了两道题,第一题是抢答题. 第二题是挑战题.
  通过以学习小组的形式进行比赛,给学生展示自我的机会,培养学生合作交流和竞争的意识,提高了课堂效率,实现了第一个情感目标.
  6. 课堂小结【3分钟】
  我以提问的形式进行课堂小结,培养学生归纳、概括能力,营造和谐的师生关系. 作为一名教师,不仅要教好书,更应当育好人. 借助“圆之美”,与学生分享自己对“圆满生活”的理解:“人有悲欢离合,月有阴睛圆缺. 希望同学们学会尊重与奉献,学会感恩与知足. 祝学习、生活圆圆满满!”目的是为了启发学生感悟人生,树立正确的人生观.
  7. 作业布置【1分钟】
  设计了分层作业.
  1. 个人必做题:①预习“8.4.2圆的一般方程”
  ② P65 1(1) 2(1)
  2.个人选做题:
  ① 已知点A(4,3),B(6,-1),求以AB为直径的圆的标准方程.
  ② 以“圆”为主题,创作一幅作品.
  3.学习小组合作完成题:
  【问题四】课后思考:
  ① 把圆的标准方程(x - 2)2 (y 1)2 = 5展开后是什么形式?
  ② 方程x2 y2 - 4x 2y = 0表示什么图形?
  考虑到学生美术专业因素,我布置了选做题——以圆为主题,创作一幅作品. 将邀请我班专业课教师评选出优秀作品,张贴在课室展览(全班48人,其中46人上交作品). 体现了中职学校文化科为专业科服务的思想.
  提出【问题五】,课后思考题让学生体会到知识的起点与终点都蕴涵着问题,它为下节课研究“圆的一般方程”作了准备.
  至此,教学过程全部结束,教学目标全部完成,重难点已经突破.
  四、教学反思
  这是一堂成功的示范课,体现在两方面:在教学环节方面,通过提出问题、学生独立思考、小组讨论、展示“成果”、老师点评来进行. 在教学手段方面,借助“学案”,降低了难度;通过“抽牌游戏”,调动了学生的积极性;通过对教室的布置,有效地关注学生;通过扮演职业角色,培养学生职业素养;通过“爱的鼓励”,积极肯定学生闪光点. 因此,学生的主体地位得到了落实,课堂焕发出青春的活力!
  以上是我对“圆的标准方程”的设计. 不足之处,请评委、老师们批评指正.
  祝大家生活、工作圆圆满满!
  谢谢大家!
其他文献
数学是一门逻辑性思维非常强的学科,在数学学科教学中离不开诸多的计算. 但是我们的数学课堂只能存在计算吗?一味的计算教学可以有效激发初中生的数学学习兴趣吗?答案当然是否定的. 数学学科虽然强调计算,但是计算并不是数学课堂的唯一主题. 新课程标准强调要在课堂教学中培养学生的动手操作能力. 受到新课程理念的影响,多年来我一直致力于研究如何有效地在初中数学课堂中运用动手操作,到目前为止,已经取得了一定的教
【摘要】 本文针对中职学校的学生对数学的兴趣不高,教学中数学知识与实际生活联系不紧的现状,分别从创设生活化的情景,灵活使用教材,将数学与专业相结合这三个方面给出了数学生活化的路径. 通过数学教学生活化,激发学生学习数学的兴趣,从而切实提高中职数学课堂的有效性.   【关键词】 中职数学;生活化;实践    近年来,随着普通中学的扩招,中职学校的招生情况越来越严峻,中职学生的入学成绩普遍较低,数学成
【摘要】 在目前的教学中,暴露出的一个明显的问题是,学生运算的水平与能力有下降的趋势.每次考试分析时,我们都会发现由于运算问题导致的错误情况举不胜举.即使到了高考临考时,仍然有不少学生存在运算上的失误.甚至可以说:“成也运算,败也运算.”然而,每次提到这个问题,我们的学生经常用“不认真”“马虎”等理由,轻描淡写地带过去,而没有真正地对这个问题加以分析,并对症下药.显然,培养与提高数学运算能力是当前
【摘要】 引导型教学的核心在于通过教师的启发式表达实现学生学科素养的本质化、全方位提升. 事实证明,引导型教学在数学教学中的巧妙运用既能承前启后,自然地实现知识与知识的衔接过渡;又能启发学生的独立思考兴趣,提升学生的独立思考能力;能逐层深入,夯实学生在数学定理、公理等方面的基础知识;此外,还能适时转换学生的思维角度,改善学生的学习方法. 因此,本文将立足苏教版教材的编写理念和初中几何数学的学科特点
應用重积分证明
【摘要】2011版《小学数学课程标准》提出,注重实践活动是数学课程发展的一个趋势,通过实践活动,对学生数学意识的培养和数学思维水平的提高具有重要意义. 数学课标明确指出:“评价的主要目的是为全面了解学生们数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系. 对数学学习的评价要关注学生学习的结果,更要关注他们在数学活动中的表现,关注数学学习的水平,更要关注他们在
《数学课程标准》中指出,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程.阅读作为人类社会生活的一项重要活动,是人类汲取知识的主要手段和认识世界的重要途径.数学学习中也需要阅读.近年来,阅读理解题成了数学考试中的新题型,具有很强的选拔功能.很多学生解题能力不强,学习过分依赖于老师,很大程度上是由于阅读能力差导致的.因此在我们的数学教学中,必须重视数学阅读,培养学生以阅读能力为核心的独
由于受传统的程序化数学教学的影响,数学课堂上氛围沉闷,教师“自导自演”的现象十分普遍,教师也很难达成教学目标.若教师正确处理了预设与生成的关系,做好数学课堂的预设与生成,能够促进精彩课堂的呈现.  一、弹性预设,铺就动态生成  在有些教师看来,教学就是一项简单的活动,只要尽力将自己的知识进行传授就可以了,但教学活动并非是这样一个简单的传授知识的过程.教学过程、教学方法等都会对教学目标的实现产生一定
【摘要】 随着新课改的不断改进与完善,数学教学方式与手段也在不断进步,在体验式数学教学、运用式数学教学被广泛普及之下,数学课外实践活动成为现代数学教学当中的一个亮点.本文对数学教学当中开展课后实践活动的原则、方法及意义进行了分析与探讨.  【关键词】 数学教学;课后实践  一、前 言  自改革开放以来,我国的经济、军事、政治都有了迅猛的发展,让全世界为之瞩目,但是唯有教育没有得到该有的效果. 我国
【摘要】在高等教育规模日益扩张的时代,如何保证教学质量,培养卓越创新人才是摆在教育机构和教育者面前的一道难题.起源于牛津大学的本科生导师制是精英教育的一面旗帜,为国内很多高校陆续采用和借鉴.笔者所在的高校在部分学生中实践了3年本科生导师质,在探索中摸索出一部分经验,也发现很多存在的问题.本文讨论了目前存在的主要问题,并就这些问题提出如何改进和继续推行本科生导师制.   【关键词】本科生导师制;科研