论文部分内容阅读
运用深度学习的方法基于脑部CT扫描图像合成相应的MRI。将28例患者进行颅脑CT和MRI扫描得到的CT和MRI的断层图像进行刚性配准,随机选取20例患者的图像输入U-Net卷积神经网络进行训练,利用训练好的网络对未参与训练的8例患者的CT图像进行预测,得到合成的MRI。研究结果显示:通过对合成的MRI进行定量分析,利用基于L2损失函数构建的U-Net网络合成MRI效果良好,平均绝对平均误差(MAE)为47.81,平均结构相似性指数(SSIM)为0.91。本研究表明可以利用深度学习方法对CT图像进行转