论文部分内容阅读
在字典学习算法中,使用图像的多矢量表示相比单一矢量表示,可以获得分类精度更高且更具有鲁棒性的分类模型.本文中我们采用多种矢量表示的组合以及合理的加权对数和方案,来提升字典算法的性能.通过在公共人脸数据集上进行实验,验证了我们的方法应用于字典学习具有更高的准确度和鲁棒性.充分挖掘和利用表示多样性可以获得被观察对象的各种潜在外观以及图像高分类精度.