论文部分内容阅读
提出了采用经验模态分解(EMD)和神经网络结合的方法对短期电力负荷进行预测.通过EMD算法将电力负荷的时间序列分解为若干个固有模态函数,采用神经网络对各个固有模态函数分别预测,然后求和重构各个固有模态函数的预测值,最后得出总的负荷预测值.通过仿真分析,该方法相对于采用单一的神经网络预测降低了预测误差,改善了短期负荷预测的有效性.