论文部分内容阅读
本文从非定常的Euler方程出发,进行了可压缩涡环和平面激波相互作用的数值研究。首先,用数值方法建立了一种无粘可压缩涡环模型;然后,利用Rankine-Hugoniot关系,在流场中嵌入运动激波,求解了同向和反向激波-涡环相干的流动过程,成功模拟了波涡相互作用过程中激波的复杂变化以及涡环的形态变化,研究了不同参数下激波-涡环相互作用的流场结构的不同形式。
Based on the unsteady Euler equations, the numerical study of the interaction between compressible vortex rings and plane shock waves is carried out. Firstly, a non-viscous and compressible vortex ring model is established by numerical method. Then, using the Rankine-Hugoniot relation, a shock wave is embedded in the flow field to solve the coherent and inverse shock-vortex-ring flow processes , We successfully simulate the complex changes of shock wave and the variation of the vortex ring during the interaction of wave vortex and study the different forms of the flow field structure of the shock-vortex ring interaction under different parameters.