论文部分内容阅读
针对智能移动终端应用平台上的广告点击率(CTR)预测问题,在传统PC端Web平台在线广告CTR预测方法的基础上,提出一个新的智能移动终端在线广告投放业务架构。基于此架构,构建基于机器学习的在线广告预测模型,对用户基本信息、广告内容、用户使用环境等多源特征进行融合提取,实现在线广告CTR的精确预测。结合移动APP应用环境的特点,将用户历史行为数据加入预测模型进一步提高CTR预测性能。实验结果表明,该模型具有较高的CTR预测准确率。