论文部分内容阅读
在图像分类任务中,由于图像背景、光照、拍摄角度等的变化,从源领域上训练的分类模型常常不适用于相关目标领域的图像数据。为此,提出一种基于深度卷积神经网络的迁移学习方法——稀疏辨别迁移模型。该方法通过自适应地学习目标领域辨别性特征分布优化分类函数,同时与特征预处理方法相结合,可获得较好的互补性作用。实验结果表明,与现有的基准与深度迁移方法相比,该方法在Office-Caltech和Office-31 2个标准跨领域分类数据集上均取得了较好的分类性能。