论文部分内容阅读
由于原始多示例学习(MIL)跟踪的分类效果和实时性较差,提出了一种加权在线多示例学习跟踪算法。首先,根据所选定目标位置分别采集目标和背景样本集,通过对所采集样本集特征的在线学习生成弱分类器集;然后,用计算样本集对数似然函数的最大值的方法从弱分类器集中选择K个最优的弱分类器,给每个弱分类器赋不同的权值,生成一个强分类器;最后,在新的一帧中抽取目标和背景样本,用生成的强分类器对待分类的目标和背景进行分类;分类结果映射成概率值,概率最大样本的位置就是所要跟踪目标的位置。对不同视频序列的测试结果表明,该跟踪