论文部分内容阅读
为提高大词汇量手语识别速度,论文提出了一种将动态时间规整(DTW)和隐马尔可夫模型(HMM)相结合的多层次的大词汇量手语识别方法。该方法思想是先进行全局粗略搜索,将要识别的手势词归入某一组范围较小的词表中,然后通过更加精确的HMM局部搜索将词识别出来。各个词汇表用DTW/ISODATA算法来产生。对4942个孤立手语词作了实验,结果表明,相对于仅用HMM单层识别而言,识别速度从原来每个词的2.364秒提高到0.137秒,提高了94.2%,识别准确率也提高了4.66%。