论文部分内容阅读
针对动态不确定环境下的机器人路径规划问题,将部分可观察马尔可夫决策过程(POMDP)与人工势场法(APF)的优点相结合,提出一种新的机器人路径规划方法。该方法充分考虑了实际环境中信息的部分可观测性,并且利用APF无需大量计算的优点指导POMDP算法的奖赏值设定,以提高POMDP算法的决策效率。仿真实验表明,所提出的算法拥有较高的搜索效率,能够快速地到达目标点。