论文部分内容阅读
与传统的超分辨算法相比,基于卷积神经网络的超分辨算法具有较大优势,但仍存在训练时间较长、重建图像纹理不够清晰等问题。基于此,在原有的卷积神经网络超分辨重建算法基础上进行了以下优化:放弃原有的修正线性单元函数,改用新的激活函数;改变网络结构,图像重建由最后的反卷积上采样来实现;采用自适应矩估计优化算法替换原本的随机梯度下降优化算法。分别在Set5和Set14测试集上进行对比实验,实验结果表明,改进算法在较少的训练时间下,峰值信噪比最大提高了2.33dB,纹理更加清晰,边缘更加完整,重建效果更好。