论文部分内容阅读
随着在线游戏市场不断壮大,互联网游戏"薅羊毛"事件日渐增多,这对网络游戏资产平衡,特别是游戏发行商的利益,造成严重影响。文章提出一种基于无监督机器学习的游戏机器人检测方法,该方法专注于发现游戏机器人与人类玩家在行为上的区别,引入word2vec思想对事件类型向量进行处理,通过聚类分析发现游戏机器人及新的欺诈模式。将无监督机器学习应用于在线游戏反欺诈引擎后,在线游戏机器人检测准确率提升约8%,极大地提高了检测的准确率。