论文部分内容阅读
目的针对基于内容的图像检索存在低层视觉特征与用户对图像理解的高层语义不一致、图像检索的精度较低以及传统的分类方法准确度低等问题,提出一种基于卷积神经网络和相关反馈支持向量机的遥感图像检索方法。方法通过对比度受限直方图均衡化算法对遥感图像进行预处理,限制遥感图像噪声的放大,采用自学习能力良好的卷积神经网络对遥感图像进行多层神经网络的监督学习提取丰富的图像特征,并将支持向量机作为基分类器,根据测试样本数据到分类超平面的距离进行排序得到检索结果,最后采用相关反馈策略对检索结果进行重新调整。结果在UC Me