论文部分内容阅读
In this paper, the cubature predictive filter(CPF) is derived based on a third-degree spherical-radial cubature rule. It provides a set of cubature-points scaling linearly with the state-vector dimension, which makes it possible to numerically compute multivariate moment integrals encountered in the nonlinear predictive filter(PF). In order to facilitate the new method, the algorithm CPF is given firstly. Then, the theoretical analyses demonstrate that the estimated accuracy of the model error and system for the proposed CPF is higher than that of the traditional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of CPF for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system’s initial estimation error,disturbing noise terms as well as the model error are small enough, which is the core part of the CPF theory.All of the results have been demonstrated by numerical simulations for a nonlinear example system.
In this paper, the cubature predictive filter (CPF) is derived based on a third-degree spherical-radial cubature rule. It provides a set of cubature-points scaling linearly with the state-vector dimension, which makes it possible to numerically compute a multivariate moment integrals encountered in the nonlinear predictive filter (PF). Then, the theoretical analyzes demonstrate that the estimated accuracy of the model error and system for the proposed CPF is higher than that of the traditional PF. Moreover, the authors analyze the stochastic boundedness and the error behavior of CPF for general nonlinear systems in a stochastic framework. In particular, the theoretical results present that the estimation error remains bounded and the covariance keeps stable if the system’s initial estimation error, disturbing noise terms as well as the model error are small enough, which is the core part of the CPF theory. All of the results have been demonstrated by numerical simulations for a nonlinear example system.